미적분 예제

주어진 점에서 접선 구하기 y=16 x , (16,64) 의 제곱근
,
단계 1
1차 도함수를 구하고 , 에서의 값을 계산하여 접선의 기울기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.2
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.4
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.5
을 묶습니다.
단계 1.6
공통분모를 가진 분자끼리 묶습니다.
단계 1.7
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.7.1
을 곱합니다.
단계 1.7.2
에서 을 뺍니다.
단계 1.8
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.9
을 묶습니다.
단계 1.10
을 묶습니다.
단계 1.11
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 1.12
에서 를 인수분해합니다.
단계 1.13
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.13.1
에서 를 인수분해합니다.
단계 1.13.2
공약수로 약분합니다.
단계 1.13.3
수식을 다시 씁니다.
단계 1.14
일 때 도함수의 값을 계산합니다.
단계 1.15
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.15.1
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.15.1.1
로 바꿔 씁니다.
단계 1.15.1.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.15.1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.15.1.3.1
공약수로 약분합니다.
단계 1.15.1.3.2
수식을 다시 씁니다.
단계 1.15.1.4
지수값을 계산합니다.
단계 1.15.2
로 나눕니다.
단계 2
기울기 및 점 값을 점-기울기 공식에 대입하고 에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
기울기 과 주어진 점 을 사용해 점-기울기 형태 에 대입합니다. 점-기울기 형태는 기울기 방정식 에서 유도한 식입니다.
단계 2.2
방정식을 간단히 하고 점-기울기 형태를 유지합니다.
단계 2.3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1.1
다시 씁니다.
단계 2.3.1.2
0을 더해 식을 간단히 합니다.
단계 2.3.1.3
분배 법칙을 적용합니다.
단계 2.3.1.4
을 곱합니다.
단계 2.3.2
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.2.1
방정식의 양변에 를 더합니다.
단계 2.3.2.2
에 더합니다.
단계 3