미적분 예제

역도함수 구하기 f(x)=x(2-x)^2
단계 1
함수 는 도함수 의 부정 적분을 계산하여 구할 수 있습니다.
단계 2
적분식을 세워 풉니다.
단계 3
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.1
를 미분합니다.
단계 3.1.2
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.2.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3.1.2.2
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 3.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.1.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.1.3.3
을 곱합니다.
단계 3.1.4
에서 을 뺍니다.
단계 3.2
를 사용해 문제를 바꿔 씁니다.
단계 4
을 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
분배 법칙을 적용합니다.
단계 4.2
분배 법칙을 적용합니다.
단계 4.3
괄호를 옮깁니다.
단계 4.4
을 곱합니다.
단계 4.5
을 곱합니다.
단계 4.6
승 합니다.
단계 4.7
지수 법칙 을 이용하여 지수를 합칩니다.
단계 4.8
에 더합니다.
단계 4.9
을 곱합니다.
단계 5
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 6
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 7
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 8
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 9
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
간단히 합니다.
단계 9.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.1
을 묶습니다.
단계 9.2.2
마이너스 부호를 분수 앞으로 보냅니다.
단계 10
를 모두 로 바꿉니다.
단계 11
답은 함수 의 역도함수입니다.