미적분 예제

Trouver la dérivée - d/dx 제곱근 7x+ 제곱근 7x+ 제곱근 7x
단계 1
인수분해하여 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.2
에서 를 인수분해합니다.
단계 1.3
지수의 기본 법칙을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
에 곱의 미분 법칙을 적용합니다.
단계 1.3.2
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.3.3
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3
를 모두 로 바꿉니다.
단계 3
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 4
을 묶습니다.
단계 5
공통분모를 가진 분자끼리 묶습니다.
단계 6
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
을 곱합니다.
단계 6.2
에서 을 뺍니다.
단계 7
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 7.2
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1
을 묶습니다.
단계 7.2.2
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 7.3
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 7.4
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 7.5
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 7.6
을 곱합니다.
단계 8
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 8.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 8.3
를 모두 로 바꿉니다.
단계 9
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 10
을 묶습니다.
단계 11
공통분모를 가진 분자끼리 묶습니다.
단계 12
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 12.1
을 곱합니다.
단계 12.2
에서 을 뺍니다.
단계 13
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 13.2
을 묶습니다.
단계 13.3
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 14
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 15
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 16
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 17
을 곱합니다.
단계 18
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 19
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 20
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 21
을 묶습니다.
단계 22
공통분모를 가진 분자끼리 묶습니다.
단계 23
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 23.1
을 곱합니다.
단계 23.2
에서 을 뺍니다.
단계 24
마이너스 부호를 분수 앞으로 보냅니다.
단계 25
을 묶습니다.
단계 26
을 묶습니다.
단계 27
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 27.1
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 27.2
인수를 다시 정렬합니다.