문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
을(를) 공통분모가 있는 분수로 표현합니다.
단계 1.2
공통분모를 가진 분자끼리 묶습니다.
단계 2
단계 2.1
을 로 바꿔 씁니다.
단계 2.2
을 로그 밖으로 내보내서 을 전개합니다.
단계 3
단계 3.1
극한을 지수로 옮깁니다.
단계 3.2
가 에 가까워지는 극한에 대해 극한의 곱의 법칙을 적용하여 극한을 나눕니다.
단계 3.3
극한을 로그 안으로 옮깁니다.
단계 3.4
가 에 가까워지는 극한에 대해 극한의 몫의 법칙을 적용하여 극한을 나눕니다.
단계 3.5
가 에 가까워지는 극한에 대해 극한의 합의 법칙을 적용하여 극한을 나눕니다.
단계 3.6
가 에 가까워질 때 상수값 의 극한을 구합니다.
단계 4
단계 4.1
에 을 대입하여 의 극한을 계산합니다.
단계 4.2
에 을 대입하여 의 극한을 계산합니다.
단계 4.3
에 을 대입하여 의 극한을 계산합니다.
단계 5
단계 5.1
를 로그 안으로 옮겨 을 간단히 합니다.
단계 5.2
지수와 로그는 역함수 관계입니다.
단계 5.3
및 의 공약수로 약분합니다.
단계 5.3.1
을 로 바꿔 씁니다.
단계 5.3.2
에서 를 인수분해합니다.
단계 5.3.3
에서 를 인수분해합니다.
단계 5.3.4
에서 를 인수분해합니다.
단계 5.3.5
공약수로 약분합니다.
단계 5.3.5.1
에서 를 인수분해합니다.
단계 5.3.5.2
공약수로 약분합니다.
단계 5.3.5.3
수식을 다시 씁니다.
단계 5.4
를 에 더합니다.
단계 5.5
에 을 곱합니다.
단계 5.6
에 곱의 미분 법칙을 적용합니다.
단계 5.7
1의 모든 거듭제곱은 1입니다.
단계 5.8
를 승 합니다.
단계 6
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: