미적분 예제

적분 계산하기 x 에 대한 x^3 제곱근 x^2-1 의 적분
단계 1
일 때 라고 하면 입니다. 이므로 는 양수입니다.
단계 2
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
피타고라스의 정리를 적용합니다.
단계 2.1.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 2.2
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
승 합니다.
단계 2.2.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.2.1.3
에 더합니다.
단계 2.2.1.4
승 합니다.
단계 2.2.1.5
승 합니다.
단계 2.2.1.6
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.2.1.7
에 더합니다.
단계 2.2.2
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
+ 로 다시 씁니다.
단계 2.2.2.2
로 바꿔 씁니다.
단계 3
피타고라스 항등식을 이용하여 로 바꿔 씁니다.
단계 4
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
를 미분합니다.
단계 4.1.2
에 대해 미분하면입니다.
단계 4.2
를 사용해 문제를 바꿔 씁니다.
단계 5
을 곱합니다.
단계 6
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
을 곱합니다.
단계 6.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
지수 법칙 을 이용하여 지수를 합칩니다.
단계 6.2.2
에 더합니다.
단계 7
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 8
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 9
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 10
간단히 합니다.
단계 11
각 적분 대입 변수를 다시 치환합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
를 모두 로 바꿉니다.
단계 11.2
를 모두 로 바꿉니다.