미적분 예제

주어진 구간의 절대 최대값 및 최소값 구하기 f(x)=4x^3-34x^2+60x , 0<x<2.5
,
단계 1
임계점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.2.3
을 곱합니다.
단계 1.1.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.1.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.3.3
을 곱합니다.
단계 1.1.1.4
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.4.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.1.4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.4.3
을 곱합니다.
단계 1.1.2
에 대한 1차 도함수는 입니다.
단계 1.2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
1차 도함수가 이 되게 합니다.
단계 1.2.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
에서 를 인수분해합니다.
단계 1.2.2.2
에서 를 인수분해합니다.
단계 1.2.2.3
에서 를 인수분해합니다.
단계 1.2.2.4
에서 를 인수분해합니다.
단계 1.2.2.5
에서 를 인수분해합니다.
단계 1.2.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.1
의 각 항을 로 나눕니다.
단계 1.2.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.2.1.1
공약수로 약분합니다.
단계 1.2.3.2.1.2
로 나눕니다.
단계 1.2.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.3.1
로 나눕니다.
단계 1.2.4
근의 공식을 이용해 방정식의 해를 구합니다.
단계 1.2.5
이차함수의 근의 공식에 , , 을 대입하여 를 구합니다.
단계 1.2.6
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.1.1
승 합니다.
단계 1.2.6.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.1.2.1
을 곱합니다.
단계 1.2.6.1.2.2
을 곱합니다.
단계 1.2.6.1.3
에서 을 뺍니다.
단계 1.2.6.2
을 곱합니다.
단계 1.2.7
수식을 간단히 하여 부분에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.7.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.7.1.1
승 합니다.
단계 1.2.7.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.7.1.2.1
을 곱합니다.
단계 1.2.7.1.2.2
을 곱합니다.
단계 1.2.7.1.3
에서 을 뺍니다.
단계 1.2.7.2
을 곱합니다.
단계 1.2.7.3
로 바꿉니다.
단계 1.2.8
수식을 간단히 하여 부분에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.8.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.8.1.1
승 합니다.
단계 1.2.8.1.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.8.1.2.1
을 곱합니다.
단계 1.2.8.1.2.2
을 곱합니다.
단계 1.2.8.1.3
에서 을 뺍니다.
단계 1.2.8.2
을 곱합니다.
단계 1.2.8.3
로 바꿉니다.
단계 1.2.9
두 해를 모두 조합하면 최종 답이 됩니다.
단계 1.3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 1.4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.1
를 대입합니다.
단계 1.4.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.1
에 곱의 미분 법칙을 적용합니다.
단계 1.4.1.2.1.2
승 합니다.
단계 1.4.1.2.1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.3.1
에서 를 인수분해합니다.
단계 1.4.1.2.1.3.2
공약수로 약분합니다.
단계 1.4.1.2.1.3.3
수식을 다시 씁니다.
단계 1.4.1.2.1.4
이항정리 이용
단계 1.4.1.2.1.5
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.5.1
승 합니다.
단계 1.4.1.2.1.5.2
승 합니다.
단계 1.4.1.2.1.5.3
을 곱합니다.
단계 1.4.1.2.1.5.4
을 곱합니다.
단계 1.4.1.2.1.5.5
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.5.5.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.4.1.2.1.5.5.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.4.1.2.1.5.5.3
을 묶습니다.
단계 1.4.1.2.1.5.5.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.5.5.4.1
공약수로 약분합니다.
단계 1.4.1.2.1.5.5.4.2
수식을 다시 씁니다.
단계 1.4.1.2.1.5.5.5
지수값을 계산합니다.
단계 1.4.1.2.1.5.6
을 곱합니다.
단계 1.4.1.2.1.5.7
로 바꿔 씁니다.
단계 1.4.1.2.1.5.8
승 합니다.
단계 1.4.1.2.1.5.9
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.5.9.1
에서 를 인수분해합니다.
단계 1.4.1.2.1.5.9.2
로 바꿔 씁니다.
단계 1.4.1.2.1.5.10
근호 안의 항을 밖으로 빼냅니다.
단계 1.4.1.2.1.6
에 더합니다.
단계 1.4.1.2.1.7
에 더합니다.
단계 1.4.1.2.1.8
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.8.1
에서 를 인수분해합니다.
단계 1.4.1.2.1.8.2
에서 를 인수분해합니다.
단계 1.4.1.2.1.8.3
에서 를 인수분해합니다.
단계 1.4.1.2.1.8.4
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.8.4.1
에서 를 인수분해합니다.
단계 1.4.1.2.1.8.4.2
공약수로 약분합니다.
단계 1.4.1.2.1.8.4.3
수식을 다시 씁니다.
단계 1.4.1.2.1.9
에 곱의 미분 법칙을 적용합니다.
단계 1.4.1.2.1.10
승 합니다.
단계 1.4.1.2.1.11
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.11.1
에서 를 인수분해합니다.
단계 1.4.1.2.1.11.2
에서 를 인수분해합니다.
단계 1.4.1.2.1.11.3
공약수로 약분합니다.
단계 1.4.1.2.1.11.4
수식을 다시 씁니다.
단계 1.4.1.2.1.12
을 묶습니다.
단계 1.4.1.2.1.13
로 바꿔 씁니다.
단계 1.4.1.2.1.14
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.14.1
분배 법칙을 적용합니다.
단계 1.4.1.2.1.14.2
분배 법칙을 적용합니다.
단계 1.4.1.2.1.14.3
분배 법칙을 적용합니다.
단계 1.4.1.2.1.15
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.15.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.15.1.1
을 곱합니다.
단계 1.4.1.2.1.15.1.2
의 왼쪽으로 이동하기
단계 1.4.1.2.1.15.1.3
근호의 곱의 미분 법칙을 사용하여 묶습니다.
단계 1.4.1.2.1.15.1.4
을 곱합니다.
단계 1.4.1.2.1.15.1.5
로 바꿔 씁니다.
단계 1.4.1.2.1.15.1.6
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 1.4.1.2.1.15.2
에 더합니다.
단계 1.4.1.2.1.15.3
에 더합니다.
단계 1.4.1.2.1.16
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.16.1
에서 를 인수분해합니다.
단계 1.4.1.2.1.16.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.16.2.1
에서 를 인수분해합니다.
단계 1.4.1.2.1.16.2.2
공약수로 약분합니다.
단계 1.4.1.2.1.16.2.3
수식을 다시 씁니다.
단계 1.4.1.2.1.17
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.4.1.2.1.18
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.18.1
에서 를 인수분해합니다.
단계 1.4.1.2.1.18.2
공약수로 약분합니다.
단계 1.4.1.2.1.18.3
수식을 다시 씁니다.
단계 1.4.1.2.1.19
분배 법칙을 적용합니다.
단계 1.4.1.2.1.20
을 곱합니다.
단계 1.4.1.2.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.4.1.2.3
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.3.1
을 곱합니다.
단계 1.4.1.2.3.2
을 곱합니다.
단계 1.4.1.2.4
공통분모를 가진 분자끼리 묶습니다.
단계 1.4.1.2.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.5.1
분배 법칙을 적용합니다.
단계 1.4.1.2.5.2
을 곱합니다.
단계 1.4.1.2.5.3
을 곱합니다.
단계 1.4.1.2.5.4
분배 법칙을 적용합니다.
단계 1.4.1.2.5.5
을 곱합니다.
단계 1.4.1.2.5.6
을 곱합니다.
단계 1.4.1.2.5.7
에서 을 뺍니다.
단계 1.4.1.2.5.8
에서 을 뺍니다.
단계 1.4.1.2.6
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.4.1.2.7
을 묶습니다.
단계 1.4.1.2.8
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.8.1
공통분모를 가진 분자끼리 묶습니다.
단계 1.4.1.2.8.2
을 곱합니다.
단계 1.4.1.2.8.3
에 더합니다.
단계 1.4.1.2.9
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.4.1.2.10
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.10.1
을 묶습니다.
단계 1.4.1.2.10.2
공통분모를 가진 분자끼리 묶습니다.
단계 1.4.1.2.11
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.11.1
을 곱합니다.
단계 1.4.1.2.11.2
에 더합니다.
단계 1.4.1.2.12
인수분해하여 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.12.1
로 바꿔 씁니다.
단계 1.4.1.2.12.2
에서 를 인수분해합니다.
단계 1.4.1.2.12.3
에서 를 인수분해합니다.
단계 1.4.1.2.12.4
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.4.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.1
를 대입합니다.
단계 1.4.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.1
에 곱의 미분 법칙을 적용합니다.
단계 1.4.2.2.1.2
승 합니다.
단계 1.4.2.2.1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.3.1
에서 를 인수분해합니다.
단계 1.4.2.2.1.3.2
공약수로 약분합니다.
단계 1.4.2.2.1.3.3
수식을 다시 씁니다.
단계 1.4.2.2.1.4
이항정리 이용
단계 1.4.2.2.1.5
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.5.1
승 합니다.
단계 1.4.2.2.1.5.2
승 합니다.
단계 1.4.2.2.1.5.3
을 곱합니다.
단계 1.4.2.2.1.5.4
을 곱합니다.
단계 1.4.2.2.1.5.5
을 곱합니다.
단계 1.4.2.2.1.5.6
에 곱의 미분 법칙을 적용합니다.
단계 1.4.2.2.1.5.7
승 합니다.
단계 1.4.2.2.1.5.8
을 곱합니다.
단계 1.4.2.2.1.5.9
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.5.9.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.4.2.2.1.5.9.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.4.2.2.1.5.9.3
을 묶습니다.
단계 1.4.2.2.1.5.9.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.5.9.4.1
공약수로 약분합니다.
단계 1.4.2.2.1.5.9.4.2
수식을 다시 씁니다.
단계 1.4.2.2.1.5.9.5
지수값을 계산합니다.
단계 1.4.2.2.1.5.10
을 곱합니다.
단계 1.4.2.2.1.5.11
에 곱의 미분 법칙을 적용합니다.
단계 1.4.2.2.1.5.12
승 합니다.
단계 1.4.2.2.1.5.13
로 바꿔 씁니다.
단계 1.4.2.2.1.5.14
승 합니다.
단계 1.4.2.2.1.5.15
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.5.15.1
에서 를 인수분해합니다.
단계 1.4.2.2.1.5.15.2
로 바꿔 씁니다.
단계 1.4.2.2.1.5.16
근호 안의 항을 밖으로 빼냅니다.
단계 1.4.2.2.1.5.17
을 곱합니다.
단계 1.4.2.2.1.6
에 더합니다.
단계 1.4.2.2.1.7
에서 을 뺍니다.
단계 1.4.2.2.1.8
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.8.1
에서 를 인수분해합니다.
단계 1.4.2.2.1.8.2
에서 를 인수분해합니다.
단계 1.4.2.2.1.8.3
에서 를 인수분해합니다.
단계 1.4.2.2.1.8.4
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.8.4.1
에서 를 인수분해합니다.
단계 1.4.2.2.1.8.4.2
공약수로 약분합니다.
단계 1.4.2.2.1.8.4.3
수식을 다시 씁니다.
단계 1.4.2.2.1.9
에 곱의 미분 법칙을 적용합니다.
단계 1.4.2.2.1.10
승 합니다.
단계 1.4.2.2.1.11
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.11.1
에서 를 인수분해합니다.
단계 1.4.2.2.1.11.2
에서 를 인수분해합니다.
단계 1.4.2.2.1.11.3
공약수로 약분합니다.
단계 1.4.2.2.1.11.4
수식을 다시 씁니다.
단계 1.4.2.2.1.12
을 묶습니다.
단계 1.4.2.2.1.13
로 바꿔 씁니다.
단계 1.4.2.2.1.14
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.14.1
분배 법칙을 적용합니다.
단계 1.4.2.2.1.14.2
분배 법칙을 적용합니다.
단계 1.4.2.2.1.14.3
분배 법칙을 적용합니다.
단계 1.4.2.2.1.15
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.15.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.15.1.1
을 곱합니다.
단계 1.4.2.2.1.15.1.2
을 곱합니다.
단계 1.4.2.2.1.15.1.3
을 곱합니다.
단계 1.4.2.2.1.15.1.4
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.15.1.4.1
을 곱합니다.
단계 1.4.2.2.1.15.1.4.2
을 곱합니다.
단계 1.4.2.2.1.15.1.4.3
승 합니다.
단계 1.4.2.2.1.15.1.4.4
승 합니다.
단계 1.4.2.2.1.15.1.4.5
지수 법칙 을 이용하여 지수를 합칩니다.
단계 1.4.2.2.1.15.1.4.6
에 더합니다.
단계 1.4.2.2.1.15.1.5
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.15.1.5.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.4.2.2.1.15.1.5.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.4.2.2.1.15.1.5.3
을 묶습니다.
단계 1.4.2.2.1.15.1.5.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.15.1.5.4.1
공약수로 약분합니다.
단계 1.4.2.2.1.15.1.5.4.2
수식을 다시 씁니다.
단계 1.4.2.2.1.15.1.5.5
지수값을 계산합니다.
단계 1.4.2.2.1.15.2
에 더합니다.
단계 1.4.2.2.1.15.3
에서 을 뺍니다.
단계 1.4.2.2.1.16
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.16.1
에서 를 인수분해합니다.
단계 1.4.2.2.1.16.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.16.2.1
에서 를 인수분해합니다.
단계 1.4.2.2.1.16.2.2
공약수로 약분합니다.
단계 1.4.2.2.1.16.2.3
수식을 다시 씁니다.
단계 1.4.2.2.1.17
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.4.2.2.1.18
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1.18.1
에서 를 인수분해합니다.
단계 1.4.2.2.1.18.2
공약수로 약분합니다.
단계 1.4.2.2.1.18.3
수식을 다시 씁니다.
단계 1.4.2.2.1.19
분배 법칙을 적용합니다.
단계 1.4.2.2.1.20
을 곱합니다.
단계 1.4.2.2.1.21
을 곱합니다.
단계 1.4.2.2.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.4.2.2.3
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.3.1
을 곱합니다.
단계 1.4.2.2.3.2
을 곱합니다.
단계 1.4.2.2.4
공통분모를 가진 분자끼리 묶습니다.
단계 1.4.2.2.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.5.1
분배 법칙을 적용합니다.
단계 1.4.2.2.5.2
을 곱합니다.
단계 1.4.2.2.5.3
을 곱합니다.
단계 1.4.2.2.5.4
분배 법칙을 적용합니다.
단계 1.4.2.2.5.5
을 곱합니다.
단계 1.4.2.2.5.6
을 곱합니다.
단계 1.4.2.2.5.7
에서 을 뺍니다.
단계 1.4.2.2.5.8
에 더합니다.
단계 1.4.2.2.6
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.4.2.2.7
을 묶습니다.
단계 1.4.2.2.8
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.8.1
공통분모를 가진 분자끼리 묶습니다.
단계 1.4.2.2.8.2
을 곱합니다.
단계 1.4.2.2.8.3
에 더합니다.
단계 1.4.2.2.9
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 1.4.2.2.10
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.10.1
을 묶습니다.
단계 1.4.2.2.10.2
공통분모를 가진 분자끼리 묶습니다.
단계 1.4.2.2.11
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.11.1
을 곱합니다.
단계 1.4.2.2.11.2
에서 을 뺍니다.
단계 1.4.2.2.12
인수분해하여 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.12.1
로 바꿔 씁니다.
단계 1.4.2.2.12.2
에서 를 인수분해합니다.
단계 1.4.2.2.12.3
에서 를 인수분해합니다.
단계 1.4.2.2.12.4
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.4.3
모든 점을 나열합니다.
단계 2
구간에 없는 점은 제외합니다.
단계 3
1차 도함수 판정법을 사용하여 극대점 또는 극소점이 될 수 있는 점을 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
1차 미분값이 또는 정의되지 않게 하는 값 주변 구간으로 을 나눕니다.
단계 3.2
1차 도함수 구간에서 와 같은 임의의 숫자를 대입하여 결과값이 음수인지 양수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
수식에서 변수 을 대입합니다.
단계 3.2.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 3.2.2.1.2
을 곱합니다.
단계 3.2.2.1.3
을 곱합니다.
단계 3.2.2.2
숫자를 더해 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.2.1
에 더합니다.
단계 3.2.2.2.2
에 더합니다.
단계 3.2.2.3
최종 답은 입니다.
단계 3.3
1차 도함수 구간에서 와 같은 임의의 숫자를 대입하여 결과값이 음수인지 양수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
수식에서 변수 을 대입합니다.
단계 3.3.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1.1
승 합니다.
단계 3.3.2.1.2
을 곱합니다.
단계 3.3.2.1.3
을 곱합니다.
단계 3.3.2.2
더하고 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.2.1
에서 을 뺍니다.
단계 3.3.2.2.2
에 더합니다.
단계 3.3.2.3
최종 답은 입니다.
단계 3.4
1차 도함수 구간에서 와 같은 임의의 숫자를 대입하여 결과값이 음수인지 양수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.1
수식에서 변수 을 대입합니다.
단계 3.4.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.1.1
승 합니다.
단계 3.4.2.1.2
을 곱합니다.
단계 3.4.2.1.3
을 곱합니다.
단계 3.4.2.2
더하고 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.4.2.2.1
에서 을 뺍니다.
단계 3.4.2.2.2
에 더합니다.
단계 3.4.2.3
최종 답은 입니다.
단계 3.5
1차 도함수의 부호가 근처에서 양수에서 음수로 변경되었으므로 은 극댓값입니다.
은 극대값입니다
단계 3.6
1차 도함수의 부호가 근처에서 음수에서 양수로 변경되었으므로 은 극솟값입니다.
은 극소값입니다.
단계 3.7
에 대한 극값입니다.
은 극대값입니다
은 극소값입니다.
은 극대값입니다
은 극소값입니다.
단계 4
주어진 구간에서 절대 최댓값과 최솟값을 결정하기 위하여 각 값에 대해 구한 값을 비교합니다. 가장 큰 값에서 최댓값이 발생하고 가장 작은 값에서 최솟값이 발생합니다.
절댓값 최대:
절대 최솟값 없음
단계 5