문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
1차 도함수를 구합니다.
단계 1.1.1
, 일 때 는 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 1.1.2
미분합니다.
단계 1.1.2.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.1.2.2
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.2.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.4
에 을 곱합니다.
단계 1.1.2.5
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.1.2.6
식을 간단히 합니다.
단계 1.1.2.6.1
를 에 더합니다.
단계 1.1.2.6.2
의 왼쪽으로 이동하기
단계 1.1.2.7
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.1.2.8
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.2.9
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.10
에 을 곱합니다.
단계 1.1.2.11
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.1.2.12
식을 간단히 합니다.
단계 1.1.2.12.1
를 에 더합니다.
단계 1.1.2.12.2
에 을 곱합니다.
단계 1.1.3
간단히 합니다.
단계 1.1.3.1
분배 법칙을 적용합니다.
단계 1.1.3.2
분배 법칙을 적용합니다.
단계 1.1.3.3
분배 법칙을 적용합니다.
단계 1.1.3.4
분배 법칙을 적용합니다.
단계 1.1.3.5
분자를 간단히 합니다.
단계 1.1.3.5.1
각 항을 간단히 합니다.
단계 1.1.3.5.1.1
지수를 더하여 에 을 곱합니다.
단계 1.1.3.5.1.1.1
를 옮깁니다.
단계 1.1.3.5.1.1.2
에 을 곱합니다.
단계 1.1.3.5.1.1.2.1
를 승 합니다.
단계 1.1.3.5.1.1.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 1.1.3.5.1.1.3
를 에 더합니다.
단계 1.1.3.5.1.2
에 을 곱합니다.
단계 1.1.3.5.1.3
에 을 곱합니다.
단계 1.1.3.5.1.4
지수를 더하여 에 을 곱합니다.
단계 1.1.3.5.1.4.1
를 옮깁니다.
단계 1.1.3.5.1.4.2
에 을 곱합니다.
단계 1.1.3.5.1.4.2.1
를 승 합니다.
단계 1.1.3.5.1.4.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 1.1.3.5.1.4.3
를 에 더합니다.
단계 1.1.3.5.1.5
에 을 곱합니다.
단계 1.1.3.5.1.6
에 을 곱합니다.
단계 1.1.3.5.2
의 반대 항을 묶습니다.
단계 1.1.3.5.2.1
에서 을 뺍니다.
단계 1.1.3.5.2.2
를 에 더합니다.
단계 1.1.3.5.3
에서 을 뺍니다.
단계 1.1.3.6
마이너스 부호를 분수 앞으로 보냅니다.
단계 1.2
의 에 대한 1차 도함수는 입니다.
단계 2
단계 2.1
1차 도함수가 이 되게 합니다.
단계 2.2
분자가 0과 같게 만듭니다.
단계 2.3
의 각 항을 로 나누고 식을 간단히 합니다.
단계 2.3.1
의 각 항을 로 나눕니다.
단계 2.3.2
좌변을 간단히 합니다.
단계 2.3.2.1
의 공약수로 약분합니다.
단계 2.3.2.1.1
공약수로 약분합니다.
단계 2.3.2.1.2
을 로 나눕니다.
단계 2.3.3
우변을 간단히 합니다.
단계 2.3.3.1
을 로 나눕니다.
단계 3
단계 3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 4
단계 4.1
일 때 값을 구합니다.
단계 4.1.1
에 를 대입합니다.
단계 4.1.2
간단히 합니다.
단계 4.1.2.1
분자를 간단히 합니다.
단계 4.1.2.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 4.1.2.1.2
에 을 곱합니다.
단계 4.1.2.1.3
를 에 더합니다.
단계 4.1.2.2
분모를 간단히 합니다.
단계 4.1.2.2.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 4.1.2.2.2
에 을 곱합니다.
단계 4.1.2.2.3
를 에 더합니다.
단계 4.2
모든 점을 나열합니다.
단계 5