미적분 예제

Trouver dS/dA s=180A-0.30A^3
단계 1
방정식의 양변을 미분합니다.
단계 2
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 3
방정식의 우변을 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.2.3
을 곱합니다.
단계 3.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.3.3
을 곱합니다.
단계 3.4
항을 다시 정렬합니다.
단계 4
좌변이 우변과 같도록 방정식을 고칩니다.
단계 5
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
가 식의 우변에 있으므로, 두 변을 바꿔 식의 좌변으로 옮깁니다.
단계 5.2
방정식의 양변에서 를 뺍니다.
단계 5.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
의 각 항을 로 나눕니다.
단계 5.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1.1
공약수로 약분합니다.
단계 5.3.2.1.2
로 나눕니다.
단계 5.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.1
로 나눕니다.
단계 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
단계 5.5
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.5.1
로 바꿔 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.5.1.1
에서 를 인수분해합니다.
단계 5.5.1.2
로 바꿔 씁니다.
단계 5.5.2
근호 안의 항을 밖으로 빼냅니다.
단계 5.6
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.6.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 5.6.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 5.6.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 6
를 대입합니다.
단계 7
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: