미적분 예제

그래프 자연로그 tan(x)
단계 1
점근선을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
모든 에 대하여 수직점근선은 가 정수일 때 에서 나타납니다. 의 수직점근선을 구하려면 의 기본 주기인 를 이용합니다. 에서 탄젠트 함수 안의 이 되도록 하여 의 수직점근선의 위치를 구합니다.
단계 1.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
탄젠트 안의 를 꺼내기 위해 방정식 양변에 탄젠트의 역을 취합니다.
단계 1.2.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
의 값을 구합니다.
단계 1.2.3
탄젠트 함수는 제2사분면과 제4사분면에서 음의 값을 가집니다. 제3사분면에 속한 두 번째 해를 구하려면 에서 기준각을 뺍니다.
단계 1.2.4
두 번째 해를 구하기 위하여 수식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.1
를 더합니다.
단계 1.2.4.2
결과 각인 은 양의 값을 가지며 과 양변을 공유하는 관계입니다
단계 1.2.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 1.2.5.2
주기 공식에서 을 대입합니다.
단계 1.2.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 1.2.5.4
로 나눕니다.
단계 1.2.6
모든 음의 각에 를 더하여 양의 각을 얻습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.1
를 더하여 양의 각도를 구합니다.
단계 1.2.6.2
소수 근사치로 바꿉니다.
단계 1.2.6.3
에서 을 뺍니다.
단계 1.2.6.4
새 각을 나열합니다.
단계 1.2.7
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
단계 1.2.8
, 에 통합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 1.3
탄젠트 함수 안의 이 되도록 합니다.
단계 1.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
탄젠트 안의 를 꺼내기 위해 방정식 양변에 탄젠트의 역을 취합니다.
단계 1.4.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.1
의 값을 구합니다.
단계 1.4.3
탄젠트 함수는 제1사분면과 제3사분면에서 양의 값을 가집니다. 두번째 해를 구하려면 에 기준각을 더하여 제4사분면에 있는 해를 구합니다.
단계 1.4.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.4.1
괄호를 제거합니다.
단계 1.4.4.2
괄호를 제거합니다.
단계 1.4.4.3
에 더합니다.
단계 1.4.5
주기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.5.1
함수의 주기는 를 이용하여 구할 수 있습니다.
단계 1.4.5.2
주기 공식에서 을 대입합니다.
단계 1.4.5.3
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 1.4.5.4
로 나눕니다.
단계 1.4.6
함수 의 주기는 이므로 양 방향으로 라디안마다 값이 반복됩니다.
임의의 정수 에 대해
단계 1.4.7
, 에 통합합니다.
임의의 정수 에 대해
임의의 정수 에 대해
단계 1.5
의 기본 주기 구간은 이며 는 수직점근선입니다.
단계 1.6
수직점근선의 위치를 알아내기 위해 주기 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.6.1
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 1.6.2
로 나눕니다.
단계 1.7
의 수직점근선은 이 정수일 때 , 과 매 마다 존재합니다.
단계 1.8
탄젠트와 코탄젠트 함수는 수직점근선만을 가집니다.
수직점근선: 이 정수일 때
수평점근선 없음
사선점근선 없음
수직점근선: 이 정수일 때
수평점근선 없음
사선점근선 없음
단계 2
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
수식에서 변수 을 대입합니다.
단계 2.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
의 값을 구합니다.
단계 2.2.2
최종 답은 입니다.
단계 3
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
수식에서 변수 을 대입합니다.
단계 3.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
의 값을 구합니다.
단계 3.2.2
최종 답은 입니다.
단계 4
인 점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
수식에서 변수 을 대입합니다.
단계 4.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
의 값을 구합니다.
단계 4.2.2
최종 답은 입니다.
단계 5
로그 함수의 그래프는 수직점근선인 점들을 사용하여 그릴 수 있습니다.
수직점근선:
단계 6