미적분 예제

Trouver la dérivée - d/dx ( x)^x 의 제곱근
단계 1
지수의 기본 법칙을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 1.2
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 1.2.2
을 묶습니다.
단계 2
로그 성질을 사용하여 미분을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
로 바꿔 씁니다.
단계 2.2
을 로그 밖으로 내보내서 을 전개합니다.
단계 3
을 묶습니다.
단계 4
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 4.2
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 4.3
를 모두 로 바꿉니다.
단계 5
상수배의 미분법을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 5.2
을 묶습니다.
단계 6
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 7
에 대해 미분하면입니다.
단계 8
멱의 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
을 묶습니다.
단계 8.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
공약수로 약분합니다.
단계 8.2.2
수식을 다시 씁니다.
단계 8.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 8.4
을 곱합니다.
단계 9
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
분배 법칙을 적용합니다.
단계 9.2
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.1
을 곱합니다.
단계 9.2.2
을 묶습니다.