문제를 입력하십시오...
미적분 예제
단계 1
이고 일 때 공식을 이용하여 부분 적분합니다.
단계 2
단계 2.1
와 을 묶습니다.
단계 2.2
와 을 묶습니다.
단계 3
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 4
단계 4.1
와 을 묶습니다.
단계 4.2
에 을 곱합니다.
단계 5
단계 5.1
로 둡니다. 를 구합니다.
단계 5.1.1
를 미분합니다.
단계 5.1.2
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 5.1.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.1.4
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 5.1.5
를 에 더합니다.
단계 5.2
와 를 사용해 문제를 바꿔 씁니다.
단계 6
단계 6.1
분배 법칙을 적용합니다.
단계 6.2
와 을 다시 정렬합니다.
단계 6.3
를 승 합니다.
단계 6.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 6.5
을(를) 공통분모가 있는 분수로 표현합니다.
단계 6.6
공통분모를 가진 분자끼리 묶습니다.
단계 6.7
를 에 더합니다.
단계 7
을 로 바꿔 씁니다.
단계 8
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 9
멱의 법칙에 의해 를 에 대해 적분하면 가 됩니다.
단계 10
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 11
멱의 법칙에 의해 를 에 대해 적분하면 가 됩니다.
단계 12
단계 12.1
간단히 합니다.
단계 12.1.1
와 을 묶습니다.
단계 12.1.2
와 을 묶습니다.
단계 12.2
간단히 합니다.
단계 12.3
간단히 합니다.
단계 12.3.1
와 을 묶습니다.
단계 12.3.2
와 을 묶습니다.
단계 12.3.3
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 12.3.4
와 을 묶습니다.
단계 12.3.5
공통분모를 가진 분자끼리 묶습니다.
단계 12.3.6
와 을 묶습니다.
단계 12.3.7
와 을 묶습니다.
단계 12.3.8
에 을 곱합니다.
단계 12.3.9
와 을 묶습니다.
단계 12.3.10
에 을 곱합니다.
단계 12.3.11
및 의 공약수로 약분합니다.
단계 12.3.11.1
에서 를 인수분해합니다.
단계 12.3.11.2
공약수로 약분합니다.
단계 12.3.11.2.1
에서 를 인수분해합니다.
단계 12.3.11.2.2
공약수로 약분합니다.
단계 12.3.11.2.3
수식을 다시 씁니다.
단계 12.3.11.2.4
을 로 나눕니다.
단계 12.3.12
의 왼쪽으로 이동하기
단계 13
를 모두 로 바꿉니다.
단계 14
항을 다시 정렬합니다.