미적분 예제

극대값 및 극소값 구하기 3x^2-12x-8
단계 1
을 함수로 씁니다.
단계 2
함수의 1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.2.3
을 곱합니다.
단계 2.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3.3
을 곱합니다.
단계 2.4
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 2.4.2
에 더합니다.
단계 3
함수의 2차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.2.3
을 곱합니다.
단계 3.3
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 3.3.2
에 더합니다.
단계 4
함수의 극대값과 극소값을 구하기 위해 도함수를 으로 두고 식을 풉니다.
단계 5
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 5.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 5.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.1.2.3
을 곱합니다.
단계 5.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 5.1.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5.1.3.3
을 곱합니다.
단계 5.1.4
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.4.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 5.1.4.2
에 더합니다.
단계 5.2
에 대한 1차 도함수는 입니다.
단계 6
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
1차 도함수가 이 되게 합니다.
단계 6.2
방정식의 양변에 를 더합니다.
단계 6.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1
의 각 항을 로 나눕니다.
단계 6.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.2.1.1
공약수로 약분합니다.
단계 6.3.2.1.2
로 나눕니다.
단계 6.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.3.1
로 나눕니다.
단계 7
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 8
계산할 임계점.
단계 9
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
단계 10
이계도함수가 양수이므로 은 극소값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극소값입니다.
단계 11
일 때 y값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
수식에서 변수 을 대입합니다.
단계 11.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.1.1
승 합니다.
단계 11.2.1.2
을 곱합니다.
단계 11.2.1.3
을 곱합니다.
단계 11.2.2
숫자를 빼서 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.2.1
에서 을 뺍니다.
단계 11.2.2.2
에서 을 뺍니다.
단계 11.2.3
최종 답은 입니다.
단계 12
에 대한 극값입니다.
은 극솟값임
단계 13