미적분 예제

Trouver la dérivée - d/dx 2/( x^3) 의 네제곱근
단계 1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3
지수의 기본 법칙을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
로 바꿔 씁니다.
단계 3.2
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.2.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
을 묶습니다.
단계 3.2.2.2
을 곱합니다.
단계 3.2.3
마이너스 부호를 분수 앞으로 보냅니다.
단계 4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 5
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 6
을 묶습니다.
단계 7
공통분모를 가진 분자끼리 묶습니다.
단계 8
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
을 곱합니다.
단계 8.2
에서 을 뺍니다.
단계 9
마이너스 부호를 분수 앞으로 보냅니다.
단계 10
을 묶습니다.
단계 11
을 곱합니다.
단계 12
을 묶습니다.
단계 13
곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.1
을 곱합니다.
단계 13.2
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 14
에서 를 인수분해합니다.
단계 15
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 15.1
에서 를 인수분해합니다.
단계 15.2
공약수로 약분합니다.
단계 15.3
수식을 다시 씁니다.
단계 16
마이너스 부호를 분수 앞으로 보냅니다.