미적분 예제

Trouver la dérivée de 2nd f(x) = natural log of x
단계 1
에 대해 미분하면입니다.
단계 2
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
로 바꿔 씁니다.
단계 2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 3
3차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 3.2
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
로 바꿔 씁니다.
단계 3.2.2
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 3.2.2.2
을 곱합니다.
단계 3.2.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.2.4
을 곱합니다.
단계 3.2.5
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 3.2.6
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.6.1
을 곱합니다.
단계 3.2.6.2
에 더합니다.
단계 3.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 3.3.2
을 묶습니다.
단계 4
4차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 4.2
지수의 기본 법칙을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
로 바꿔 씁니다.
단계 4.2.2
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.2.2.2
을 곱합니다.
단계 4.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.4
을 곱합니다.
단계 4.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.1
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 4.5.2
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.5.2.1
을 묶습니다.
단계 4.5.2.2
마이너스 부호를 분수 앞으로 보냅니다.
단계 5
에 대한 4차 도함수는 입니다.