미적분 예제

주어진 구간의 절대 최대값 및 최소값 구하기 f(x)=2/(x^4-16)
f(x)=2x4-16
단계 1
함수의 1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
상수배의 미분법을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
2x 에 대해 일정하므로 x 에 대한 2x4-16 의 미분은 2ddx[1x4-16] 입니다.
2ddx[1x4-16]
단계 1.1.2
1x4-16(x4-16)-1로 바꿔 씁니다.
2ddx[(x4-16)-1]
2ddx[(x4-16)-1]
단계 1.2
f(x)=x-1, g(x)=x4-16일 때 ddx[f(g(x))]f(g(x))g(x)이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
연쇄법칙을 적용하기 위해 ux4-16로 바꿉니다.
2(ddu[u-1]ddx[x4-16])
단계 1.2.2
n=-1일 때 ddu[un]nun-1이라는 멱의 법칙을 이용하여 미분합니다.
2(-u-2ddx[x4-16])
단계 1.2.3
u를 모두 x4-16로 바꿉니다.
2(-(x4-16)-2ddx[x4-16])
2(-(x4-16)-2ddx[x4-16])
단계 1.3
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
-12을 곱합니다.
-2((x4-16)-2ddx[x4-16])
단계 1.3.2
합의 법칙에 의해 x4-16x에 대해 미분하면 ddx[x4]+ddx[-16]가 됩니다.
-2(x4-16)-2(ddx[x4]+ddx[-16])
단계 1.3.3
n=4일 때 ddx[xn]nxn-1이라는 멱의 법칙을 이용하여 미분합니다.
-2(x4-16)-2(4x3+ddx[-16])
단계 1.3.4
-16x에 대해 일정하므로, -16x에 대해 미분하면 -16입니다.
-2(x4-16)-2(4x3+0)
단계 1.3.5
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.5.1
4x30에 더합니다.
-2(x4-16)-2(4x3)
단계 1.3.5.2
4-2을 곱합니다.
-8(x4-16)-2x3
-8(x4-16)-2x3
-8(x4-16)-2x3
단계 1.4
음의 지수 법칙 b-n=1bn을 활용하여 식을 다시 씁니다.
-81(x4-16)2x3
단계 1.5
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
-81(x4-16)2을 묶습니다.
-8(x4-16)2x3
단계 1.5.2
마이너스 부호를 분수 앞으로 보냅니다.
-8(x4-16)2x3
단계 1.5.3
x38(x4-16)2을 묶습니다.
-x38(x4-16)2
단계 1.5.4
x3의 왼쪽으로 8 이동하기
-8x3(x4-16)2
-8x3(x4-16)2
-8x3(x4-16)2
단계 2
함수의 2차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
-8x 에 대해 일정하므로 x 에 대한 -8x3(x4-16)2 의 미분은 -8ddx[x3(x4-16)2] 입니다.
f′′(x)=-8ddxx3(x4-16)2
단계 2.2
f(x)=x3, g(x)=(x4-16)2일 때 ddx[f(x)g(x)]g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2이라는 몫의 미분 법칙을 이용하여 미분합니다.
f′′(x)=-8(x4-16)2ddx(x3)-x3ddx(x4-16)2((x4-16)2)2
단계 2.3
멱의 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
((x4-16)2)2 의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1.1
멱의 법칙을 적용하여 (am)n=amn과 같이 지수를 곱합니다.
f′′(x)=-8(x4-16)2ddx(x3)-x3ddx(x4-16)2(x4-16)22
단계 2.3.1.2
22을 곱합니다.
f′′(x)=-8(x4-16)2ddx(x3)-x3ddx(x4-16)2(x4-16)4
f′′(x)=-8(x4-16)2ddx(x3)-x3ddx(x4-16)2(x4-16)4
단계 2.3.2
n=3일 때 ddx[xn]nxn-1이라는 멱의 법칙을 이용하여 미분합니다.
f′′(x)=-8(x4-16)2(3x2)-x3ddx(x4-16)2(x4-16)4
단계 2.3.3
(x4-16)2의 왼쪽으로 3 이동하기
f′′(x)=-83((x4-16)2x2)-x3ddx(x4-16)2(x4-16)4
f′′(x)=-83((x4-16)2x2)-x3ddx(x4-16)2(x4-16)4
단계 2.4
f(x)=x2, g(x)=x4-16일 때 ddx[f(g(x))]f(g(x))g(x)이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
연쇄법칙을 적용하기 위해 ux4-16로 바꿉니다.
f′′(x)=-83(x4-16)2x2-x3(ddu(u2)ddx(x4-16))(x4-16)4
단계 2.4.2
n=2일 때 ddu[un]nun-1이라는 멱의 법칙을 이용하여 미분합니다.
f′′(x)=-83(x4-16)2x2-x3(2uddx(x4-16))(x4-16)4
단계 2.4.3
u를 모두 x4-16로 바꿉니다.
f′′(x)=-83(x4-16)2x2-x3(2(x4-16)ddx(x4-16))(x4-16)4
f′′(x)=-83(x4-16)2x2-x3(2(x4-16)ddx(x4-16))(x4-16)4
단계 2.5
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
2-1을 곱합니다.
f′′(x)=-83(x4-16)2x2-2x3((x4-16)ddx(x4-16))(x4-16)4
단계 2.5.2
합의 법칙에 의해 x4-16x에 대해 미분하면 ddx[x4]+ddx[-16]가 됩니다.
f′′(x)=-83(x4-16)2x2-2x3((x4-16)(ddx(x4)+ddx(-16)))(x4-16)4
단계 2.5.3
n=4일 때 ddx[xn]nxn-1이라는 멱의 법칙을 이용하여 미분합니다.
f′′(x)=-83(x4-16)2x2-2x3((x4-16)(4x3+ddx(-16)))(x4-16)4
단계 2.5.4
-16x에 대해 일정하므로, -16x에 대해 미분하면 -16입니다.
f′′(x)=-83(x4-16)2x2-2x3((x4-16)(4x3+0))(x4-16)4
단계 2.5.5
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.5.1
4x30에 더합니다.
f′′(x)=-83(x4-16)2x2-2x3((x4-16)(4x3))(x4-16)4
단계 2.5.5.2
x4-16의 왼쪽으로 4 이동하기
f′′(x)=-83(x4-16)2x2-2x3(4((x4-16)x3))(x4-16)4
단계 2.5.5.3
4-2을 곱합니다.
f′′(x)=-83(x4-16)2x2-8x3((x4-16)x3)(x4-16)4
f′′(x)=-83(x4-16)2x2-8x3((x4-16)x3)(x4-16)4
f′′(x)=-83(x4-16)2x2-8x3((x4-16)x3)(x4-16)4
단계 2.6
지수 법칙 aman=am+n 을 이용하여 지수를 합칩니다.
f′′(x)=-83(x4-16)2x2-8x3+3(x4-16)(x4-16)4
단계 2.7
33에 더합니다.
f′′(x)=-83(x4-16)2x2-8x6(x4-16)(x4-16)4
단계 2.8
-83(x4-16)2x2-8x6(x4-16)(x4-16)4을 묶습니다.
f′′(x)=-8(3(x4-16)2x2-8x6(x4-16))(x4-16)4
단계 2.9
마이너스 부호를 분수 앞으로 보냅니다.
f′′(x)=-8(3(x4-16)2x2-8x6(x4-16))(x4-16)4
단계 2.10
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.1
분배 법칙을 적용합니다.
f′′(x)=-8(3(x4-16)2x2-8x6x4-8x6-16)(x4-16)4
단계 2.10.2
분배 법칙을 적용합니다.
f′′(x)=-8(3(x4-16)2x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.1
(x4-16)2(x4-16)(x4-16)로 바꿔 씁니다.
f′′(x)=-8(3((x4-16)(x4-16))x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.2
FOIL 계산법을 이용하여 (x4-16)(x4-16) 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.2.1
분배 법칙을 적용합니다.
f′′(x)=-8(3(x4(x4-16)-16(x4-16))x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.2.2
분배 법칙을 적용합니다.
f′′(x)=-8(3(x4x4+x4-16-16(x4-16))x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.2.3
분배 법칙을 적용합니다.
f′′(x)=-8(3(x4x4+x4-16-16x4-16-16)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
f′′(x)=-8(3(x4x4+x4-16-16x4-16-16)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.3
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.3.1.1
지수를 더하여 x4x4을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.3.1.1.1
지수 법칙 aman=am+n 을 이용하여 지수를 합칩니다.
f′′(x)=-8(3(x4+4+x4-16-16x4-16-16)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.3.1.1.2
44에 더합니다.
f′′(x)=-8(3(x8+x4-16-16x4-16-16)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
f′′(x)=-8(3(x8+x4-16-16x4-16-16)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.3.1.2
x4의 왼쪽으로 -16 이동하기
f′′(x)=-8(3(x8-16x4-16x4-16-16)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.3.1.3
-16-16을 곱합니다.
f′′(x)=-8(3(x8-16x4-16x4+256)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
f′′(x)=-8(3(x8-16x4-16x4+256)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.3.2
-16x4에서 16x4을 뺍니다.
f′′(x)=-8(3(x8-32x4+256)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
f′′(x)=-8(3(x8-32x4+256)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.4
분배 법칙을 적용합니다.
f′′(x)=-8((3x8+3(-32x4)+3256)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.5.1
-323을 곱합니다.
f′′(x)=-8((3x8-96x4+3256)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.5.2
3256을 곱합니다.
f′′(x)=-8((3x8-96x4+768)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
f′′(x)=-8((3x8-96x4+768)x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.6
분배 법칙을 적용합니다.
f′′(x)=-8(3x8x2-96x4x2+768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.7
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.7.1
지수를 더하여 x8x2을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.7.1.1
x2를 옮깁니다.
f′′(x)=-8(3(x2x8)-96x4x2+768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.7.1.2
지수 법칙 aman=am+n 을 이용하여 지수를 합칩니다.
f′′(x)=-8(3x2+8-96x4x2+768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.7.1.3
28에 더합니다.
f′′(x)=-8(3x10-96x4x2+768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
f′′(x)=-8(3x10-96x4x2+768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.7.2
지수를 더하여 x4x2을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.7.2.1
x2를 옮깁니다.
f′′(x)=-8(3x10-96(x2x4)+768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.7.2.2
지수 법칙 aman=am+n 을 이용하여 지수를 합칩니다.
f′′(x)=-8(3x10-96x2+4+768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.7.2.3
24에 더합니다.
f′′(x)=-8(3x10-96x6+768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
f′′(x)=-8(3x10-96x6+768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
f′′(x)=-8(3x10-96x6+768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.8
분배 법칙을 적용합니다.
f′′(x)=-8(3x10)+8(-96x6)+8(768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.9
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.9.1
38을 곱합니다.
f′′(x)=-24x10+8(-96x6)+8(768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.9.2
-968을 곱합니다.
f′′(x)=-24x10-768x6+8(768x2)+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.9.3
7688을 곱합니다.
f′′(x)=-24x10-768x6+6144x2+8(-8x6x4)+8(-8x6-16)(x4-16)4
f′′(x)=-24x10-768x6+6144x2+8(-8x6x4)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.10
지수를 더하여 x6x4을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.3.1.10.1
x4를 옮깁니다.
f′′(x)=-24x10-768x6+6144x2+8(-8(x4x6))+8(-8x6-16)(x4-16)4
단계 2.10.3.1.10.2
지수 법칙 aman=am+n 을 이용하여 지수를 합칩니다.
f′′(x)=-24x10-768x6+6144x2+8(-8x4+6)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.10.3
46에 더합니다.
f′′(x)=-24x10-768x6+6144x2+8(-8x10)+8(-8x6-16)(x4-16)4
f′′(x)=-24x10-768x6+6144x2+8(-8x10)+8(-8x6-16)(x4-16)4
단계 2.10.3.1.11
-88을 곱합니다.
f′′(x)=-24x10-768x6+6144x2-64x10+8(-8x6-16)(x4-16)4
단계 2.10.3.1.12
-16-8을 곱합니다.
f′′(x)=-24x10-768x6+6144x2-64x10+8(128x6)(x4-16)4
단계 2.10.3.1.13
1288을 곱합니다.
f′′(x)=-24x10-768x6+6144x2-64x10+1024x6(x4-16)4
f′′(x)=-24x10-768x6+6144x2-64x10+1024x6(x4-16)4
단계 2.10.3.2
24x10에서 64x10을 뺍니다.
f′′(x)=--40x10-768x6+6144x2+1024x6(x4-16)4
단계 2.10.3.3
-768x61024x6에 더합니다.
f′′(x)=--40x10+256x6+6144x2(x4-16)4
f′′(x)=--40x10+256x6+6144x2(x4-16)4
단계 2.10.4
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.4.1
-40x10+256x6+6144x2에서 8x2를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.4.1.1
-40x10에서 8x2를 인수분해합니다.
f′′(x)=-8x2(-5x8)+256x6+6144x2(x4-16)4
단계 2.10.4.1.2
256x6에서 8x2를 인수분해합니다.
f′′(x)=-8x2(-5x8)+8x2(32x4)+6144x2(x4-16)4
단계 2.10.4.1.3
6144x2에서 8x2를 인수분해합니다.
f′′(x)=-8x2(-5x8)+8x2(32x4)+8x2(768)(x4-16)4
단계 2.10.4.1.4
8x2(-5x8)+8x2(32x4)에서 8x2를 인수분해합니다.
f′′(x)=-8x2(-5x8+32x4)+8x2(768)(x4-16)4
단계 2.10.4.1.5
8x2(-5x8+32x4)+8x2(768)에서 8x2를 인수분해합니다.
f′′(x)=-8x2(-5x8+32x4+768)(x4-16)4
f′′(x)=-8x2(-5x8+32x4+768)(x4-16)4
단계 2.10.4.2
x8(x4)2로 바꿔 씁니다.
f′′(x)=-8x2(-5(x4)2+32x4+768)(x4-16)4
단계 2.10.4.3
u=x4 로 정의합니다. 식에 나타나는 모든 x4u 로 바꿉니다.
f′′(x)=-8x2(-5u2+32u+768)(x4-16)4
단계 2.10.4.4
공통인수를 이용하여 인수분해를 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.4.4.1
ax2+bx+c 형태의 다항식에 대해 곱이 ac=-5768=-3840 이고 합이 b=32 인 두 항의 합으로 중간항을 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.4.4.1.1
32u에서 32를 인수분해합니다.
f′′(x)=-8x2(-5u2+32(u)+768)(x4-16)4
단계 2.10.4.4.1.2
32-48 + 80로 다시 씁니다.
f′′(x)=-8x2(-5u2+(-48+80)u+768)(x4-16)4
단계 2.10.4.4.1.3
분배 법칙을 적용합니다.
f′′(x)=-8x2(-5u2-48u+80u+768)(x4-16)4
f′′(x)=-8x2(-5u2-48u+80u+768)(x4-16)4
단계 2.10.4.4.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.4.4.2.1
처음 두 항과 마지막 두 항을 묶습니다.
f′′(x)=-8x2((-5u2-48u)+80u+768)(x4-16)4
단계 2.10.4.4.2.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
f′′(x)=-8x2(u(-5u-48)-16(-5u-48))(x4-16)4
f′′(x)=-8x2(u(-5u-48)-16(-5u-48))(x4-16)4
단계 2.10.4.4.3
최대공약수 -5u-48을 밖으로 빼어 다항식을 인수분해합니다.
f′′(x)=-8x2((-5u-48)(u-16))(x4-16)4
f′′(x)=-8x2((-5u-48)(u-16))(x4-16)4
단계 2.10.4.5
u를 모두 x4로 바꿉니다.
f′′(x)=-8x2((-5x4-48)(x4-16))(x4-16)4
단계 2.10.4.6
x4(x2)2로 바꿔 씁니다.
f′′(x)=-8x2((-5x4-48)((x2)2-16))(x4-16)4
단계 2.10.4.7
1642로 바꿔 씁니다.
f′′(x)=-8x2((-5x4-48)((x2)2-42))(x4-16)4
단계 2.10.4.8
두 항 모두 완전제곱식이므로, 제곱의 차 공식 a2-b2=(a+b)(a-b) 을 이용하여 인수분해합니다. 이 때 a=x2 이고 b=4 입니다.
f′′(x)=-8x2((-5x4-48)((x2+4)(x2-4)))(x4-16)4
단계 2.10.4.9
인수분해합니다.
f′′(x)=-8x2(-5x4-48)(x2+4)(x+2)(x-2)(x4-16)4
f′′(x)=-8x2(-5x4-48)(x2+4)(x+2)(x-2)(x4-16)4
단계 2.10.5
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.5.1
로 바꿔 씁니다.
단계 2.10.5.2
로 바꿔 씁니다.
단계 2.10.5.3
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 2.10.5.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.5.4.1
로 바꿔 씁니다.
단계 2.10.5.4.2
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 2.10.5.5
에 곱의 미분 법칙을 적용합니다.
단계 2.10.5.6
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.5.6.1
분배 법칙을 적용합니다.
단계 2.10.5.6.2
분배 법칙을 적용합니다.
단계 2.10.5.6.3
분배 법칙을 적용합니다.
단계 2.10.5.7
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.5.7.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.5.7.1.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.5.7.1.1.1
승 합니다.
단계 2.10.5.7.1.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.10.5.7.1.2
에 더합니다.
단계 2.10.5.7.2
의 왼쪽으로 이동하기
단계 2.10.5.7.3
을 곱합니다.
단계 2.10.5.8
각 그룹에서 최대공약수를 밖으로 뺍니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.5.8.1
처음 두 항과 마지막 두 항을 묶습니다.
단계 2.10.5.8.2
각 그룹에서 최대공약수를 밖으로 뺍니다.
단계 2.10.5.9
최대공약수 을 밖으로 빼어 다항식을 인수분해합니다.
단계 2.10.5.10
에 곱의 미분 법칙을 적용합니다.
단계 2.10.6
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.6.1
에서 를 인수분해합니다.
단계 2.10.6.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.6.2.1
에서 를 인수분해합니다.
단계 2.10.6.2.2
공약수로 약분합니다.
단계 2.10.6.2.3
수식을 다시 씁니다.
단계 2.10.7
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.7.1
에서 를 인수분해합니다.
단계 2.10.7.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.7.2.1
에서 를 인수분해합니다.
단계 2.10.7.2.2
공약수로 약분합니다.
단계 2.10.7.2.3
수식을 다시 씁니다.
단계 2.10.8
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.8.1
에서 를 인수분해합니다.
단계 2.10.8.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.8.2.1
에서 를 인수분해합니다.
단계 2.10.8.2.2
공약수로 약분합니다.
단계 2.10.8.2.3
수식을 다시 씁니다.
단계 2.10.9
에서 를 인수분해합니다.
단계 2.10.10
로 바꿔 씁니다.
단계 2.10.11
에서 를 인수분해합니다.
단계 2.10.12
로 바꿔 씁니다.
단계 2.10.13
마이너스 부호를 분수 앞으로 보냅니다.
단계 2.10.14
을 곱합니다.
단계 2.10.15
을 곱합니다.
단계 2.10.16
에서 인수를 다시 정렬합니다.
단계 3
함수의 극대값과 극소값을 구하기 위해 도함수를 으로 두고 식을 풉니다.
단계 4
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
상수배의 미분법을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 4.1.1.2
로 바꿔 씁니다.
단계 4.1.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 4.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.1.2.3
를 모두 로 바꿉니다.
단계 4.1.3
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.3.1
을 곱합니다.
단계 4.1.3.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 4.1.3.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.1.3.4
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 4.1.3.5
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.3.5.1
에 더합니다.
단계 4.1.3.5.2
을 곱합니다.
단계 4.1.4
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 4.1.5
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.5.1
을 묶습니다.
단계 4.1.5.2
마이너스 부호를 분수 앞으로 보냅니다.
단계 4.1.5.3
을 묶습니다.
단계 4.1.5.4
의 왼쪽으로 이동하기
단계 4.2
에 대한 1차 도함수는 입니다.
단계 5
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
1차 도함수가 이 되게 합니다.
단계 5.2
분자가 0과 같게 만듭니다.
단계 5.3
에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1
의 각 항을 로 나눕니다.
단계 5.3.1.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.2.1.1
공약수로 약분합니다.
단계 5.3.1.2.1.2
로 나눕니다.
단계 5.3.1.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.3.1
로 나눕니다.
단계 5.3.2
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 5.3.3
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.1
로 바꿔 씁니다.
단계 5.3.3.2
실수를 가정하여 근호 안의 항을 빼냅니다.
단계 6
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 6.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
방정식의 좌변을 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.1
로 바꿔 씁니다.
단계 6.2.1.2
로 바꿔 씁니다.
단계 6.2.1.3
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 6.2.1.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.4.1
로 바꿔 씁니다.
단계 6.2.1.4.2
인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1.4.2.1
두 항 모두 완전제곱식이므로, 제곱의 차 공식 을 이용하여 인수분해합니다. 이 때 이고 입니다.
단계 6.2.1.4.2.2
불필요한 괄호를 제거합니다.
단계 6.2.1.5
에 곱의 미분 법칙을 적용합니다.
단계 6.2.1.6
에 곱의 미분 법칙을 적용합니다.
단계 6.2.2
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 6.2.3
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.3.1
와 같다고 둡니다.
단계 6.2.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.3.2.1
와 같다고 둡니다.
단계 6.2.3.2.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.3.2.2.1
방정식의 양변에서 를 뺍니다.
단계 6.2.3.2.2.2
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 6.2.3.2.2.3
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.3.2.2.3.1
로 바꿔 씁니다.
단계 6.2.3.2.2.3.2
로 바꿔 씁니다.
단계 6.2.3.2.2.3.3
로 바꿔 씁니다.
단계 6.2.3.2.2.3.4
로 바꿔 씁니다.
단계 6.2.3.2.2.3.5
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 6.2.3.2.2.3.6
의 왼쪽으로 이동하기
단계 6.2.3.2.2.4
해의 양수와 음수 부분 모두 최종 해가 됩니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.3.2.2.4.1
먼저, 의 양의 값을 이용하여 첫 번째 해를 구합니다.
단계 6.2.3.2.2.4.2
그 다음 의 마이너스 값을 사용하여 두 번째 해를 구합니다.
단계 6.2.3.2.2.4.3
해의 양수와 음수 부분 모두 최종 해가 됩니다.
단계 6.2.4
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.4.1
와 같다고 둡니다.
단계 6.2.4.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.4.2.1
와 같다고 둡니다.
단계 6.2.4.2.2
방정식의 양변에서 를 뺍니다.
단계 6.2.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.5.1
와 같다고 둡니다.
단계 6.2.5.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.5.2.1
와 같다고 둡니다.
단계 6.2.5.2.2
방정식의 양변에 를 더합니다.
단계 6.2.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 6.3
분모가 이거나 제곱근의 인수가 보다 작거나 또는 로그의 진수가 보다 작거나 같은 경우 식이 정의되지 않습니다.
단계 7
계산할 임계점.
단계 8
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
단계 9
이차 미분값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 9.1.2
을 곱합니다.
단계 9.1.3
에 더합니다.
단계 9.1.4
을 곱합니다.
단계 9.1.5
을 여러 번 거듭제곱해도 이 나옵니다.
단계 9.2
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.1
로 바꿔 씁니다.
단계 9.2.2
로 바꿔 씁니다.
단계 9.2.3
에서 를 인수분해합니다.
단계 9.2.4
에 곱의 미분 법칙을 적용합니다.
단계 9.2.5
승 합니다.
단계 9.2.6
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.6.1
를 옮깁니다.
단계 9.2.6.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 9.2.6.3
에 더합니다.
단계 9.3
을 곱합니다.
단계 9.4
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.4.1
에서 을 뺍니다.
단계 9.4.2
을 여러 번 거듭제곱해도 이 나옵니다.
단계 9.4.3
에 더합니다.
단계 9.4.4
지수를 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.4.4.1
로 바꿔 씁니다.
단계 9.4.4.2
에 곱의 미분 법칙을 적용합니다.
단계 9.4.4.3
승 합니다.
단계 9.4.4.4
을 곱합니다.
단계 9.4.4.5
로 바꿔 씁니다.
단계 9.4.4.6
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.4.4.6.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 9.4.4.6.2
을 곱합니다.
단계 9.4.4.7
지수 법칙 을 이용하여 지수를 합칩니다.
단계 9.4.4.8
에 더합니다.
단계 9.4.5
승 합니다.
단계 9.5
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.5.1
을 곱합니다.
단계 9.5.2
로 나눕니다.
단계 10
는 점이 한 개 이상이거나 2차 도함수가 정의되어 있지 않으므로 1차 도함수 판정을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
1차 미분값이 또는 정의되지 않게 하는 값 주변 구간으로 을 나눕니다.
단계 10.2
1차 도함수 구간에서 와 같은 임의의 숫자를 대입하여 결과값이 음수인지 양수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.1
수식에서 변수 을 대입합니다.
단계 10.2.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.1
승 합니다.
단계 10.2.2.2
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.2.1
승 합니다.
단계 10.2.2.2.2
에서 을 뺍니다.
단계 10.2.2.2.3
승 합니다.
단계 10.2.2.3
공약수를 소거하여 수식을 간단히 정리합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.3.1
을 곱합니다.
단계 10.2.2.3.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.3.2.1
에서 를 인수분해합니다.
단계 10.2.2.3.2.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.2.2.3.2.2.1
에서 를 인수분해합니다.
단계 10.2.2.3.2.2.2
공약수로 약분합니다.
단계 10.2.2.3.2.2.3
수식을 다시 씁니다.
단계 10.2.2.3.3
마이너스 부호를 분수 앞으로 보냅니다.
단계 10.2.2.4
최종 답은 입니다.
단계 10.3
1차 도함수 구간에서 와 같은 임의의 숫자를 대입하여 결과값이 음수인지 양수인지 확인합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.3.1
수식에서 변수 을 대입합니다.
단계 10.3.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.3.2.1
1의 모든 거듭제곱은 1입니다.
단계 10.3.2.2
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.3.2.2.1
1의 모든 거듭제곱은 1입니다.
단계 10.3.2.2.2
에서 을 뺍니다.
단계 10.3.2.2.3
승 합니다.
단계 10.3.2.3
을 곱합니다.
단계 10.3.2.4
최종 답은 입니다.
단계 10.4
1차 도함수의 부호가 근처에서 양수에서 음수로 변경되었으므로 은 극댓값입니다.
은 극대값입니다
은 극대값입니다
단계 11
image of graph
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=