미적분 예제

주어진 구간의 절대 최대값 및 최소값 구하기 g(x)=x^3e^(-x) , -1<=x<=4
,
단계 1
임계점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 1.1.1.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.1.1.2.2
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 1.1.1.2.3
를 모두 로 바꿉니다.
단계 1.1.1.3
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.1.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.3.3
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.3.3.1
을 곱합니다.
단계 1.1.1.3.3.2
의 왼쪽으로 이동하기
단계 1.1.1.3.3.3
로 바꿔 씁니다.
단계 1.1.1.3.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.4.1
항을 다시 정렬합니다.
단계 1.1.1.4.2
에서 인수를 다시 정렬합니다.
단계 1.1.2
에 대한 1차 도함수는 입니다.
단계 1.2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
1차 도함수가 이 되게 합니다.
단계 1.2.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
에서 를 인수분해합니다.
단계 1.2.2.2
에서 를 인수분해합니다.
단계 1.2.2.3
에서 를 인수분해합니다.
단계 1.2.3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 1.2.4
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.1
와 같다고 둡니다.
단계 1.2.4.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.2.1
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 1.2.4.2.2
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.4.2.2.1
로 바꿔 씁니다.
단계 1.2.4.2.2.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 1.2.4.2.2.3
플러스 마이너스 입니다.
단계 1.2.5
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.5.1
와 같다고 둡니다.
단계 1.2.5.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.5.2.1
지수에서 변수를 제거하기 위하여 방정식의 양변에 자연로그를 취합니다.
단계 1.2.5.2.2
이(가) 정의되지 않으므로 방정식을 풀 수 없습니다.
정의되지 않음
단계 1.2.5.2.3
에 대한 해가 없습니다.
해 없음
해 없음
해 없음
단계 1.2.6
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.1
와 같다고 둡니다.
단계 1.2.6.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.2.1
방정식의 양변에서 를 뺍니다.
단계 1.2.6.2.2
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.2.2.1
의 각 항을 로 나눕니다.
단계 1.2.6.2.2.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.2.2.2.1
두 음수를 나누면 양수가 나옵니다.
단계 1.2.6.2.2.2.2
로 나눕니다.
단계 1.2.6.2.2.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.6.2.2.3.1
로 나눕니다.
단계 1.2.7
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 1.3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 1.4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.1
를 대입합니다.
단계 1.4.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 1.4.1.2.2
을 곱합니다.
단계 1.4.1.2.3
모든 수의 승은 입니다.
단계 1.4.1.2.4
을 곱합니다.
단계 1.4.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.1
를 대입합니다.
단계 1.4.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.2.1
승 합니다.
단계 1.4.2.2.2
을 곱합니다.
단계 1.4.2.2.3
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 1.4.2.2.4
을 묶습니다.
단계 1.4.3
모든 점을 나열합니다.
단계 2
포함된 끝점에서 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
를 대입합니다.
단계 2.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1
승 합니다.
단계 2.1.2.2
을 곱합니다.
단계 2.1.2.3
간단히 합니다.
단계 2.1.2.4
로 바꿔 씁니다.
단계 2.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
를 대입합니다.
단계 2.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
승 합니다.
단계 2.2.2.2
을 곱합니다.
단계 2.2.2.3
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 2.2.2.4
을 묶습니다.
단계 2.3
모든 점을 나열합니다.
단계 3
주어진 구간에서 절대 최댓값과 최솟값을 결정하기 위하여 각 값에 대해 구한 값을 비교합니다. 가장 큰 값에서 최댓값이 발생하고 가장 작은 값에서 최솟값이 발생합니다.
절댓값 최대:
절댓값 최소:
단계 4