미적분 예제

주어진 구간의 절대 최대값 및 최소값 구하기 f(x)=e^x ; [-3,5]
;
단계 1
임계점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 1.1.2
에 대한 1차 도함수는 입니다.
단계 1.2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
1차 도함수가 이 되게 합니다.
단계 1.2.2
지수에서 변수를 제거하기 위하여 방정식의 양변에 자연로그를 취합니다.
단계 1.2.3
이(가) 정의되지 않으므로 방정식을 풀 수 없습니다.
정의되지 않음
단계 1.2.4
에 대한 해가 없습니다.
해 없음
해 없음
단계 1.3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
식의 정의역은 식이 정의되지 않는 수를 제외한 모든 실수입니다. 이 경우 식이 정의되지 않도록 하는 실수는 없습니다.
단계 1.4
도함수가 이거나 정의되지 않았다면 원래 문제의 정의역에는 값이 존재하지 않습니다.
임계점 없음
임계점 없음
단계 2
포함된 끝점에서 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
를 대입합니다.
단계 2.1.2
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 2.2
를 대입합니다.
단계 2.3
모든 점을 나열합니다.
단계 3
주어진 구간에서 절대 최댓값과 최솟값을 결정하기 위하여 각 값에 대해 구한 값을 비교합니다. 가장 큰 값에서 최댓값이 발생하고 가장 작은 값에서 최솟값이 발생합니다.
절댓값 최대:
절댓값 최소:
단계 4