미적분 예제

주어진 구간의 절대 최대값 및 최소값 구하기 y=2-|t-2| , [-9,4]
,
단계 1
임계점을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.1.1.2
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.1.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.1.2.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1.2.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.1.1.2.2.2
에 대해 미분하면입니다.
단계 1.1.1.2.2.3
를 모두 로 바꿉니다.
단계 1.1.1.2.3
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.1.2.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.1.2.5
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.1.2.6
에 더합니다.
단계 1.1.1.2.7
을 곱합니다.
단계 1.1.1.3
에서 을 뺍니다.
단계 1.1.2
에 대한 1차 도함수는 입니다.
단계 1.2
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
1차 도함수가 이 되게 합니다.
단계 1.2.2
분자가 0과 같게 만듭니다.
단계 1.2.3
방정식의 양변에 를 더합니다.
단계 1.2.4
이 참이 되지 않게 하는 해를 버립니다.
단계 1.3
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 1.3.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.2.1
절대값의 항을 제거합니다. 이므로 방정식 우변에 이 생깁니다.
단계 1.3.2.2
플러스 마이너스 입니다.
단계 1.3.2.3
방정식의 양변에 를 더합니다.
단계 1.4
도함수가 이거나 정의되지 않은 각 값에서 을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.1
를 대입합니다.
단계 1.4.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1.2.1.1
에서 을 뺍니다.
단계 1.4.1.2.1.2
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 1.4.1.2.1.3
을 곱합니다.
단계 1.4.1.2.2
에 더합니다.
단계 1.4.2
모든 점을 나열합니다.
단계 2
포함된 끝점에서 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
를 대입합니다.
단계 2.1.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1.1
에서 을 뺍니다.
단계 2.1.2.1.2
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 2.1.2.1.3
을 곱합니다.
단계 2.1.2.2
에서 을 뺍니다.
단계 2.2
일 때 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
를 대입합니다.
단계 2.2.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1.1
에서 을 뺍니다.
단계 2.2.2.1.2
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 2.2.2.1.3
을 곱합니다.
단계 2.2.2.2
에서 을 뺍니다.
단계 2.3
모든 점을 나열합니다.
단계 3
주어진 구간에서 절대 최댓값과 최솟값을 결정하기 위하여 각 값에 대해 구한 값을 비교합니다. 가장 큰 값에서 최댓값이 발생하고 가장 작은 값에서 최솟값이 발생합니다.
절댓값 최대:
절댓값 최소:
단계 4