문제를 입력하십시오...
미적분 예제
,
단계 1
단계 1.1
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 1.1.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 1.1.2
를 에 대해 미분하면입니다.
단계 1.1.3
를 모두 로 바꿉니다.
단계 1.2
미분합니다.
단계 1.2.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.2
에 을 곱합니다.
단계 1.2.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.4
에 을 곱합니다.
단계 1.3
일 때 도함수의 값을 계산합니다.
단계 1.4
간단히 합니다.
단계 1.4.1
와 을 묶습니다.
단계 1.4.2
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다.
단계 1.4.3
의 정확한 값은 입니다.
단계 1.4.4
와 을 묶습니다.
단계 1.4.5
마이너스 부호를 분수 앞으로 보냅니다.
단계 2
단계 2.1
기울기 과 주어진 점 을 사용해 점-기울기 형태 의 및 에 대입합니다. 점-기울기 형태는 기울기 방정식 에서 유도한 식입니다.
단계 2.2
방정식을 간단히 하고 점-기울기 형태를 유지합니다.
단계 2.3
에 대해 풉니다.
단계 2.3.1
을 간단히 합니다.
단계 2.3.1.1
다시 씁니다.
단계 2.3.1.2
0을 더해 식을 간단히 합니다.
단계 2.3.1.3
분배 법칙을 적용합니다.
단계 2.3.1.4
와 을 묶습니다.
단계 2.3.1.5
을 곱합니다.
단계 2.3.1.5.1
에 을 곱합니다.
단계 2.3.1.5.2
에 을 곱합니다.
단계 2.3.1.5.3
에 을 곱합니다.
단계 2.3.1.5.4
에 을 곱합니다.
단계 2.3.1.6
의 왼쪽으로 이동하기
단계 2.3.2
방정식의 양변에서 를 뺍니다.
단계 2.3.3
형태로 씁니다.
단계 2.3.3.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 2.3.3.2
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
단계 2.3.3.2.1
에 을 곱합니다.
단계 2.3.3.2.2
에 을 곱합니다.
단계 2.3.3.3
공통분모를 가진 분자끼리 묶습니다.
단계 2.3.3.4
에 을 곱합니다.
단계 2.3.3.5
항을 다시 정렬합니다.
단계 2.3.3.6
괄호를 제거합니다.
단계 3