미적분 예제

Trouver la tangente à x=1 f(x)=6- x ; x=1 의 자연로그
;
단계 1
에 상당하는 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
를 대입합니다.
단계 1.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
괄호를 제거합니다.
단계 1.2.2
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1.1
의 자연로그값은 입니다.
단계 1.2.2.1.2
을 곱합니다.
단계 1.2.2.2
에 더합니다.
단계 2
1차 도함수를 구하고 , 에서의 값을 계산하여 접선의 기울기를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.1.2
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 2.2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2.2
에 대해 미분하면입니다.
단계 2.3
에서 을 뺍니다.
단계 2.4
일 때 도함수의 값을 계산합니다.
단계 2.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1.1
공약수로 약분합니다.
단계 2.5.1.2
수식을 다시 씁니다.
단계 2.5.2
을 곱합니다.
단계 3
기울기 및 점 값을 점-기울기 공식에 대입하고 에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
기울기 과 주어진 점 을 사용해 점-기울기 형태 에 대입합니다. 점-기울기 형태는 기울기 방정식 에서 유도한 식입니다.
단계 3.2
방정식을 간단히 하고 점-기울기 형태를 유지합니다.
단계 3.3
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
다시 씁니다.
단계 3.3.1.2
0을 더해 식을 간단히 합니다.
단계 3.3.1.3
분배 법칙을 적용합니다.
단계 3.3.1.4
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.4.1
로 바꿔 씁니다.
단계 3.3.1.4.2
을 곱합니다.
단계 3.3.2
를 포함하지 않은 모든 항을 방정식의 우변으로 옮깁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.2.1
방정식의 양변에 를 더합니다.
단계 3.3.2.2
에 더합니다.
단계 4