문제를 입력하십시오...
미적분 예제
,
단계 1
단계 1.1
, 일 때 는 이라는 연쇄 법칙을 이용하여 미분합니다.
단계 1.1.1
연쇄법칙을 적용하기 위해 를 로 바꿉니다.
단계 1.1.2
를 에 대해 미분하면입니다.
단계 1.1.3
를 모두 로 바꿉니다.
단계 1.2
미분합니다.
단계 1.2.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.2.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.3
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.4
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.5
에 을 곱합니다.
단계 1.2.6
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.2.7
를 에 더합니다.
단계 1.3
간단히 합니다.
단계 1.3.1
인수를 다시 정렬합니다.
단계 1.3.2
완전제곱 법칙을 이용하여 인수분해합니다.
단계 1.3.2.1
을 로 바꿔 씁니다.
단계 1.3.2.2
중간 항이 첫 번째 항 및 세 번째 항에서 제곱되는 수를 곱한 값의 두 배인지 확인합니다.
단계 1.3.2.3
다항식을 다시 씁니다.
단계 1.3.2.4
이고 일 때 완전제곱 삼항식 법칙 을 이용하여 인수분해합니다.
단계 1.3.3
에 을 곱합니다.
단계 1.3.4
에서 를 인수분해합니다.
단계 1.3.4.1
에서 를 인수분해합니다.
단계 1.3.4.2
에서 를 인수분해합니다.
단계 1.3.4.3
에서 를 인수분해합니다.
단계 1.3.5
및 의 공약수로 약분합니다.
단계 1.3.5.1
에서 를 인수분해합니다.
단계 1.3.5.2
공약수로 약분합니다.
단계 1.3.5.2.1
에서 를 인수분해합니다.
단계 1.3.5.2.2
공약수로 약분합니다.
단계 1.3.5.2.3
수식을 다시 씁니다.
단계 1.4
일 때 도함수의 값을 계산합니다.
단계 1.5
간단히 합니다.
단계 1.5.1
에서 을 뺍니다.
단계 1.5.2
을 로 나눕니다.
단계 2
단계 2.1
기울기 과 주어진 점 을 사용해 점-기울기 형태 의 및 에 대입합니다. 점-기울기 형태는 기울기 방정식 에서 유도한 식입니다.
단계 2.2
방정식을 간단히 하고 점-기울기 형태를 유지합니다.
단계 2.3
에 대해 풉니다.
단계 2.3.1
를 에 더합니다.
단계 2.3.2
을 간단히 합니다.
단계 2.3.2.1
분배 법칙을 적용합니다.
단계 2.3.2.2
에 을 곱합니다.
단계 3