미적분 예제

Integrate Using u-Substitution 구간 -1 에서 1 까지의 x 에 대한 3x^2 제곱근 x^3+5 의 적분
단계 1
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
를 미분합니다.
단계 1.1.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.4
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.5
에 더합니다.
단계 1.2
에 극한의 하한을 대입합니다.
단계 1.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
승 합니다.
단계 1.3.2
에 더합니다.
단계 1.4
에 극한의 상한을 대입합니다.
단계 1.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
1의 모든 거듭제곱은 1입니다.
단계 1.5.2
에 더합니다.
단계 1.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 1.7
, 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 2
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 4
분수를 통분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
, 일 때, 값을 계산합니다.
단계 4.2
을 묶습니다.
단계 4.3
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1.1
로 바꿔 씁니다.
단계 4.3.1.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.3.1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1.3.1
공약수로 약분합니다.
단계 4.3.1.3.2
수식을 다시 씁니다.
단계 4.3.1.4
승 합니다.
단계 4.3.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.2.1
을 곱합니다.
단계 4.3.2.2
을 묶습니다.
단계 4.3.2.3
을 곱합니다.
단계 4.3.2.4
마이너스 부호를 분수 앞으로 보냅니다.
단계 5
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: