미적분 예제

Integrate Using u-Substitution 구간 6/pi 에서 2/(3pi) 까지의 x 에 대한 (cos(1/x))/(x^2) 의 적분
단계 1
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
를 미분합니다.
단계 1.1.2
로 바꿔 씁니다.
단계 1.1.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.4
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 1.2
에 극한의 하한을 대입합니다.
단계 1.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
분자에 분모의 역수를 곱합니다.
단계 1.3.2
을 곱합니다.
단계 1.4
에 극한의 상한을 대입합니다.
단계 1.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
분자에 분모의 역수를 곱합니다.
단계 1.5.2
을 곱합니다.
단계 1.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 1.7
, 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 2
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 3
에 대해 적분하면 입니다.
단계 4
, 일 때, 값을 계산합니다.
단계 5
의 정확한 값은 입니다.
단계 6
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1.1
제1사분면에서 동일한 삼각값을 갖는 각도를 찾아 기준 각도를 적용합니다. 제4사분면에서 사인이 음수이므로 수식에 마이너스 부호를 붙입니다.
단계 6.1.2
의 정확한 값은 입니다.
단계 6.1.3
을 곱합니다.
단계 6.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 6.3
을 묶습니다.
단계 6.4
공통분모를 가진 분자끼리 묶습니다.
단계 6.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.5.1
을 곱합니다.
단계 6.5.2
에서 을 뺍니다.
단계 6.6
마이너스 부호를 분수 앞으로 보냅니다.
단계 6.7
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.7.1
을 곱합니다.
단계 6.7.2
을 곱합니다.
단계 7
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태:
대분수 형식: