미적분 예제

Integrate Using u-Substitution 구간 3 에서 4 까지의 x 에 대한 x 제곱근 x-3 의 적분
단계 1
먼저 로 정의합니다. 그러면 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
를 미분합니다.
단계 1.1.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.4
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.5
에 더합니다.
단계 1.2
에 극한의 하한을 대입합니다.
단계 1.3
에서 을 뺍니다.
단계 1.4
에 극한의 상한을 대입합니다.
단계 1.5
에서 을 뺍니다.
단계 1.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 1.7
, 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 2
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 3
을 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
분배 법칙을 적용합니다.
단계 3.2
승 합니다.
단계 3.3
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.4
을(를) 공통분모가 있는 분수로 표현합니다.
단계 3.5
공통분모를 가진 분자끼리 묶습니다.
단계 3.6
에 더합니다.
단계 3.7
을 다시 정렬합니다.
단계 4
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 5
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 6
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 7
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 8
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
, 일 때, 값을 계산합니다.
단계 8.2
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.2.1
, 일 때, 값을 계산합니다.
단계 8.2.2
1의 모든 거듭제곱은 1입니다.
단계 8.2.3
을 곱합니다.
단계 8.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.3.1
로 바꿔 씁니다.
단계 8.3.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 8.3.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.3.3.1
공약수로 약분합니다.
단계 8.3.3.2
수식을 다시 씁니다.
단계 8.3.4
을 여러 번 거듭제곱해도 이 나옵니다.
단계 8.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.4.1
을 곱합니다.
단계 8.4.2
을 곱합니다.
단계 8.5
에 더합니다.
단계 8.6
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.6.1
을 묶습니다.
단계 8.6.2
을 곱합니다.
단계 8.6.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.6.3.1
에서 를 인수분해합니다.
단계 8.6.3.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.6.3.2.1
에서 를 인수분해합니다.
단계 8.6.3.2.2
공약수로 약분합니다.
단계 8.6.3.2.3
수식을 다시 씁니다.
단계 8.6.3.2.4
로 나눕니다.
단계 8.7
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.7.1
1의 모든 거듭제곱은 1입니다.
단계 8.7.2
을 곱합니다.
단계 8.8
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.8.1
로 바꿔 씁니다.
단계 8.8.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 8.8.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.8.3.1
공약수로 약분합니다.
단계 8.8.3.2
수식을 다시 씁니다.
단계 8.8.4
을 여러 번 거듭제곱해도 이 나옵니다.
단계 8.9
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.9.1
을 곱합니다.
단계 8.9.2
을 곱합니다.
단계 8.10
에 더합니다.
단계 8.11
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.11.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 8.11.2
을 묶습니다.
단계 8.11.3
공통분모를 가진 분자끼리 묶습니다.
단계 8.11.4
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.11.4.1
을 곱합니다.
단계 8.11.4.2
에 더합니다.
단계 9
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태:
대분수 형식: