미적분 예제

Integrate Using u-Substitution x 에 대한 (7x+e^(4x)) 의 적분
단계 1
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
를 미분합니다.
단계 1.1.2
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.4
을 곱합니다.
단계 1.2
를 사용해 문제를 바꿔 씁니다.
단계 2
을 묶습니다.
단계 3
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 4
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 5
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 6
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 7
에 대해 적분하면 입니다.
단계 8
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
간단히 합니다.
단계 8.2
항을 다시 정렬합니다.
단계 9
를 모두 로 바꿉니다.
단계 10
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1.1
에 곱의 미분 법칙을 적용합니다.
단계 10.1.2
승 합니다.
단계 10.1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1.3.1
에서 를 인수분해합니다.
단계 10.1.3.2
공약수로 약분합니다.
단계 10.1.3.3
수식을 다시 씁니다.
단계 10.1.4
을 곱합니다.
단계 10.2
분배 법칙을 적용합니다.
단계 10.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.3.1
에서 를 인수분해합니다.
단계 10.3.2
에서 를 인수분해합니다.
단계 10.3.3
공약수로 약분합니다.
단계 10.3.4
수식을 다시 씁니다.
단계 10.4
을 묶습니다.
단계 10.5
을 묶습니다.
단계 10.6
을 묶습니다.
단계 11
항을 다시 정렬합니다.