문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
로 둡니다. 를 구합니다.
단계 1.1.1
를 미분합니다.
단계 1.1.2
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.1.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.4
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.1.5
를 에 더합니다.
단계 1.2
와 를 사용해 문제를 바꿔 씁니다.
단계 2
단계 2.1
을 로 바꿔 씁니다.
단계 2.1.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.1.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.1.3
와 을 묶습니다.
단계 2.1.4
의 공약수로 약분합니다.
단계 2.1.4.1
공약수로 약분합니다.
단계 2.1.4.2
수식을 다시 씁니다.
단계 2.1.5
간단히 합니다.
단계 2.2
에 을 곱합니다.
단계 2.3
의 왼쪽으로 이동하기
단계 3
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 4
단계 4.1
다항식을 나눗셈 형태로 적습니다. 각 지수에 대하여 항이 없는 경우 값이 인 항을 삽입합니다.
+ | - |
단계 4.2
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
+ | - |
단계 4.3
새로운 몫 값에 제수를 곱합니다.
+ | - | ||||||
+ | + |
단계 4.4
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
+ | - | ||||||
- | - |
단계 4.5
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
+ | - | ||||||
- | - | ||||||
- |
단계 4.6
최종 답은 몫에 제수 분의 나머지를 더한 값입니다.
단계 5
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 6
상수 규칙을 적용합니다.
단계 7
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 8
를 에 대해 적분하면 입니다.
단계 9
간단히 합니다.
단계 10
를 모두 로 바꿉니다.
단계 11
단계 11.1
분배 법칙을 적용합니다.
단계 11.2
간단히 합니다.
단계 11.2.1
와 을 묶습니다.
단계 11.2.2
에 을 곱합니다.
단계 11.2.3
와 을 묶습니다.
단계 11.3
공통분모를 가진 분자끼리 묶습니다.
단계 12
항을 다시 정렬합니다.