미적분 예제

Integrate Using u-Substitution 구간 e 에서 e^4 까지의 x 에 대한 x) 의 자연로그의 1/(x 제곱근의 적분
단계 1
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
를 미분합니다.
단계 1.1.2
에 대해 미분하면입니다.
단계 1.2
에 극한의 하한을 대입합니다.
단계 1.3
의 자연로그값은 입니다.
단계 1.4
에 극한의 상한을 대입합니다.
단계 1.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
로그 공식을 이용해 지수에서 를 바깥으로 빼냅니다.
단계 1.5.2
의 자연로그값은 입니다.
단계 1.5.3
을 곱합니다.
단계 1.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 1.7
, 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 2
지수의 기본 법칙을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.2
승을 취하여 분모 밖으로 옮깁니다.
단계 2.3
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.3.2
을 묶습니다.
단계 2.3.3
마이너스 부호를 분수 앞으로 보냅니다.
단계 3
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 4
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
, 일 때, 값을 계산합니다.
단계 4.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
로 바꿔 씁니다.
단계 4.2.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.2.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.3.1
공약수로 약분합니다.
단계 4.2.3.2
수식을 다시 씁니다.
단계 4.2.4
지수값을 계산합니다.
단계 4.3
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
을 곱합니다.
단계 4.3.2
1의 모든 거듭제곱은 1입니다.
단계 4.3.3
을 곱합니다.
단계 4.3.4
에서 을 뺍니다.