미적분 예제

Trouver dx/dy y=(4x^3)/(2x^2-5)
단계 1
방정식의 양변을 미분합니다.
단계 2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3
방정식의 우변을 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2
, 일 때 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 3.3
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.3.3
를 모두 로 바꿉니다.
단계 3.4
의 왼쪽으로 이동하기
단계 3.5
로 바꿔 씁니다.
단계 3.6
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.6.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 3.6.2
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.7
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.7.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.7.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.7.3
를 모두 로 바꿉니다.
단계 3.8
을 곱합니다.
단계 3.9
로 바꿔 씁니다.
단계 3.10
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 3.11
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.11.1
에 더합니다.
단계 3.11.2
을 곱합니다.
단계 3.12
승 합니다.
단계 3.13
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.14
에 더합니다.
단계 3.15
을 묶습니다.
단계 3.16
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.16.1
분배 법칙을 적용합니다.
단계 3.16.2
분배 법칙을 적용합니다.
단계 3.16.3
분배 법칙을 적용합니다.
단계 3.16.4
분배 법칙을 적용합니다.
단계 3.16.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.16.5.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.16.5.1.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.16.5.1.1.1
를 옮깁니다.
단계 3.16.5.1.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.16.5.1.1.3
에 더합니다.
단계 3.16.5.1.2
을 곱합니다.
단계 3.16.5.1.3
을 곱합니다.
단계 3.16.5.1.4
을 곱합니다.
단계 3.16.5.1.5
을 곱합니다.
단계 3.16.5.1.6
을 곱합니다.
단계 3.16.5.2
에서 을 뺍니다.
단계 3.16.6
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.16.6.1
에서 를 인수분해합니다.
단계 3.16.6.2
에서 를 인수분해합니다.
단계 3.16.6.3
에서 를 인수분해합니다.
단계 3.16.7
에서 인수를 다시 정렬합니다.
단계 4
좌변이 우변과 같도록 방정식을 고칩니다.
단계 5
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
로 방정식을 다시 씁니다.
단계 5.2
양변에 을 곱합니다.
단계 5.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1.1
항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1.1.1.1
공약수로 약분합니다.
단계 5.3.1.1.1.1.2
수식을 다시 씁니다.
단계 5.3.1.1.1.2
분배 법칙을 적용합니다.
단계 5.3.1.1.1.3
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1.1.3.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 5.3.1.1.1.3.2
을 곱합니다.
단계 5.3.1.1.2
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1.2.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1.2.1.1
를 옮깁니다.
단계 5.3.1.1.2.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.3.1.1.2.1.3
에 더합니다.
단계 5.3.1.1.2.2
을 곱합니다.
단계 5.3.1.1.3
모두 곱해 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1.3.1
분배 법칙을 적용합니다.
단계 5.3.1.1.3.2
다시 정렬합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1.1.3.2.1
를 옮깁니다.
단계 5.3.1.1.3.2.2
를 옮깁니다.
단계 5.3.2
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1
을 곱합니다.
단계 5.4
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.1
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.1.1
로 바꿔 씁니다.
단계 5.4.1.2
FOIL 계산법을 이용하여 를 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.1.2.1
분배 법칙을 적용합니다.
단계 5.4.1.2.2
분배 법칙을 적용합니다.
단계 5.4.1.2.3
분배 법칙을 적용합니다.
단계 5.4.1.3
동류항끼리 묶고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.1.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.1.3.1.1
곱셈의 교환법칙을 사용하여 다시 씁니다.
단계 5.4.1.3.1.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.1.3.1.2.1
를 옮깁니다.
단계 5.4.1.3.1.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.4.1.3.1.2.3
에 더합니다.
단계 5.4.1.3.1.3
을 곱합니다.
단계 5.4.1.3.1.4
을 곱합니다.
단계 5.4.1.3.1.5
을 곱합니다.
단계 5.4.1.3.1.6
을 곱합니다.
단계 5.4.1.3.2
에서 을 뺍니다.
단계 5.4.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.2.1
에서 를 인수분해합니다.
단계 5.4.2.2
에서 를 인수분해합니다.
단계 5.4.2.3
에서 를 인수분해합니다.
단계 5.4.3
의 각 항을 로 나누고 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.1
의 각 항을 로 나눕니다.
단계 5.4.3.2
좌변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.2.1.1
공약수로 약분합니다.
단계 5.4.3.2.1.2
수식을 다시 씁니다.
단계 5.4.3.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.2.2.1
공약수로 약분합니다.
단계 5.4.3.2.2.2
수식을 다시 씁니다.
단계 5.4.3.2.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.2.3.1
공약수로 약분합니다.
단계 5.4.3.2.3.2
로 나눕니다.
단계 5.4.3.3
우변을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.1.1.1
공약수로 약분합니다.
단계 5.4.3.3.1.1.2
수식을 다시 씁니다.
단계 5.4.3.3.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.1.2.1
에서 를 인수분해합니다.
단계 5.4.3.3.1.2.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.1.2.2.1
공약수로 약분합니다.
단계 5.4.3.3.1.2.2.2
수식을 다시 씁니다.
단계 5.4.3.3.1.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.1.3.1
에서 를 인수분해합니다.
단계 5.4.3.3.1.3.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.1.3.2.1
에서 를 인수분해합니다.
단계 5.4.3.3.1.3.2.2
공약수로 약분합니다.
단계 5.4.3.3.1.3.2.3
수식을 다시 씁니다.
단계 5.4.3.3.1.4
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.1.4.1
공약수로 약분합니다.
단계 5.4.3.3.1.4.2
수식을 다시 씁니다.
단계 5.4.3.3.1.5
마이너스 부호를 분수 앞으로 보냅니다.
단계 5.4.3.3.2
공통분모를 가진 분자끼리 묶습니다.
단계 5.4.3.3.3
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 5.4.3.3.4
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.4.1
을 곱합니다.
단계 5.4.3.3.4.2
인수를 다시 정렬합니다.
단계 5.4.3.3.5
공통분모를 가진 분자끼리 묶습니다.
단계 5.4.3.3.6
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.6.1
분배 법칙을 적용합니다.
단계 5.4.3.3.6.2
의 왼쪽으로 이동하기
단계 5.4.3.3.6.3
을 곱합니다.
단계 5.4.3.3.6.4
분배 법칙을 적용합니다.
단계 5.4.3.3.6.5
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.6.5.1
를 옮깁니다.
단계 5.4.3.3.6.5.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.4.3.3.6.5.3
에 더합니다.
단계 5.4.3.3.6.6
인수분해된 형태로 를 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.6.6.1
로 바꿔 씁니다.
단계 5.4.3.3.6.6.2
로 정의합니다. 식에 나타나는 모든 로 바꿉니다.
단계 5.4.3.3.6.6.3
완전제곱 법칙을 이용하여 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.4.3.3.6.6.3.1
로 바꿔 씁니다.
단계 5.4.3.3.6.6.3.2
로 바꿔 씁니다.
단계 5.4.3.3.6.6.3.3
중간 항이 첫 번째 항 및 세 번째 항에서 제곱되는 수를 곱한 값의 두 배인지 확인합니다.
단계 5.4.3.3.6.6.3.4
다항식을 다시 씁니다.
단계 5.4.3.3.6.6.3.5
이고 일 때 완전제곱 삼항식 법칙 을 이용하여 인수분해합니다.
단계 5.4.3.3.6.6.4
를 모두 로 바꿉니다.
단계 6
를 대입합니다.