문제를 입력하십시오...
미적분 예제
단계 1
괄호를 제거합니다.
단계 2
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 3
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 4
단계 4.1
로 둡니다. 를 구합니다.
단계 4.1.1
를 미분합니다.
단계 4.1.2
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 4.1.3
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.1.4
에 을 곱합니다.
단계 4.2
의 에 극한의 하한을 대입합니다.
단계 4.3
에 을 곱합니다.
단계 4.4
의 에 극한의 상한을 대입합니다.
단계 4.5
에 을 곱합니다.
단계 4.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 4.7
와 , 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 5
단계 5.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 5.2
와 을 묶습니다.
단계 6
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 7
에 을 곱합니다.
단계 8
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 9
단계 9.1
와 을 묶습니다.
단계 9.2
마이너스 부호를 분수 앞으로 보냅니다.
단계 10
를 에 대해 적분하면 입니다.
단계 11
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 12
를 에 대해 적분하면 입니다.
단계 13
단계 13.1
, 일 때, 값을 계산합니다.
단계 13.2
, 일 때, 값을 계산합니다.
단계 13.3
괄호를 제거합니다.
단계 14
단계 14.1
각 항을 간단히 합니다.
단계 14.1.1
분배 법칙을 적용합니다.
단계 14.1.2
와 을 묶습니다.
단계 14.1.3
을 곱합니다.
단계 14.1.3.1
에 을 곱합니다.
단계 14.1.3.2
에 을 곱합니다.
단계 14.1.3.3
와 을 묶습니다.
단계 14.1.4
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 14.1.5
분배 법칙을 적용합니다.
단계 14.1.6
에 을 곱합니다.
단계 14.2
각 항을 간단히 합니다.
단계 14.2.1
음의 지수 법칙 을 활용하여 식을 다시 씁니다.
단계 14.2.2
와 을 묶습니다.
단계 15
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태:
단계 16