미적분 예제

Trouver la dérivée de Second f(x)=cos(x^2)
단계 1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.1.2
에 대해 미분하면입니다.
단계 1.1.3
를 모두 로 바꿉니다.
단계 1.2
멱의 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.2
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.2.1
을 곱합니다.
단계 1.2.2.2
인수를 다시 정렬합니다.
단계 2
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 2.3
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.3.2
에 대해 미분하면입니다.
단계 2.3.3
를 모두 로 바꿉니다.
단계 2.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.5
승 합니다.
단계 2.6
승 합니다.
단계 2.7
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.8
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.1
에 더합니다.
단계 2.8.2
의 왼쪽으로 이동하기
단계 2.9
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.10
을 곱합니다.
단계 2.11
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.11.1
분배 법칙을 적용합니다.
단계 2.11.2
을 곱합니다.
단계 3
에 대한 2차 도함수는 입니다.