미적분 예제

적분 계산하기 구간 1 에서 x^2+1 까지의 t 에 대한 (2t+2)/( 제곱근 t+1) 의 적분
단계 1
먼저 로 정의합니다. 그러면 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
를 미분합니다.
단계 1.1.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.4
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.5
에 더합니다.
단계 1.2
에 극한의 하한을 대입합니다.
단계 1.3
에 더합니다.
단계 1.4
에 극한의 상한을 대입합니다.
단계 1.5
에 더합니다.
단계 1.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 1.7
, 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 2
지수의 기본 법칙을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 2.2
승을 취하여 분모 밖으로 옮깁니다.
단계 2.3
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.3.2
을 묶습니다.
단계 2.3.3
마이너스 부호를 분수 앞으로 보냅니다.
단계 3
을 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
분배 법칙을 적용합니다.
단계 3.2
분배 법칙을 적용합니다.
단계 3.3
분배 법칙을 적용합니다.
단계 3.4
승 합니다.
단계 3.5
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.6
을(를) 공통분모가 있는 분수로 표현합니다.
단계 3.7
공통분모를 가진 분자끼리 묶습니다.
단계 3.8
에서 을 뺍니다.
단계 3.9
을 곱합니다.
단계 3.10
에 더합니다.
단계 3.11
에 더합니다.
단계 4
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 5
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 6
을 묶습니다.
단계 7
대입하여 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.1
, 일 때, 값을 계산합니다.
단계 7.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 7.2.1.1.1
승 합니다.
단계 7.2.1.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 7.2.1.2
을(를) 공통분모가 있는 분수로 표현합니다.
단계 7.2.1.3
공통분모를 가진 분자끼리 묶습니다.
단계 7.2.1.4
에 더합니다.
단계 7.2.2
공통분모를 가진 분자끼리 묶습니다.
단계 7.2.3
을 묶습니다.
단계 8
항을 다시 정렬합니다.
단계 9
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
분배 법칙을 적용합니다.
단계 9.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.1
을 묶습니다.
단계 9.2.2
을 곱합니다.
단계 9.2.3
을 묶습니다.
단계 9.3
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.3.1
을 묶습니다.
단계 9.3.2
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.3.2.1
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.3.2.1.1
승 합니다.
단계 9.3.2.1.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 9.3.2.2
을(를) 공통분모가 있는 분수로 표현합니다.
단계 9.3.2.3
공통분모를 가진 분자끼리 묶습니다.
단계 9.3.2.4
에 더합니다.
단계 9.4
공통분모를 가진 분자끼리 묶습니다.