미적분 예제

Trouver la dérivée - d/dx |x^2-4x|
단계 1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.2
에 대해 미분하면입니다.
단계 1.3
를 모두 로 바꿉니다.
단계 2
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.5
을 곱합니다.
단계 3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
인수를 다시 정렬합니다.
단계 3.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
에서 를 인수분해합니다.
단계 3.2.2
에서 를 인수분해합니다.
단계 3.2.3
에서 를 인수분해합니다.
단계 3.3
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.1.1
에서 를 인수분해합니다.
단계 3.3.1.2
에서 를 인수분해합니다.
단계 3.3.1.3
에서 를 인수분해합니다.
단계 3.3.2
분배 법칙을 적용합니다.
단계 3.3.3
을 곱합니다.
단계 3.3.4
의 왼쪽으로 이동하기
단계 3.3.5
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.3.5.1
에서 를 인수분해합니다.
단계 3.3.5.2
에서 를 인수분해합니다.
단계 3.3.5.3
에서 를 인수분해합니다.
단계 3.4
을 곱합니다.
단계 3.5
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
에서 를 인수분해합니다.
단계 3.5.2
에서 를 인수분해합니다.
단계 3.5.3
에서 를 인수분해합니다.
단계 3.6
에서 인수를 다시 정렬합니다.