미적분 예제

최대값/최소값 구하기 y=(e^x)/x
단계 1
함수의 1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
, 일 때 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 1.2
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 1.3
멱의 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.3.2
을 곱합니다.
단계 1.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.1
항을 다시 정렬합니다.
단계 1.4.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.4.2.1
에서 를 인수분해합니다.
단계 1.4.2.2
에서 를 인수분해합니다.
단계 1.4.2.3
에서 를 인수분해합니다.
단계 2
함수의 2차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
, 일 때 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 2.2
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.2.2
을 곱합니다.
단계 2.3
, 일 때 이라는 곱의 미분 법칙을 이용하여 미분합니다.
단계 2.4
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2.4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.4.3
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 2.4.4
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.4.4.1
에 더합니다.
단계 2.4.4.2
을 곱합니다.
단계 2.5
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 2.6
멱의 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.1
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.6.2
인수분해하여 식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.2.1
을 곱합니다.
단계 2.6.2.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.6.2.2.1
에서 를 인수분해합니다.
단계 2.6.2.2.2
에서 를 인수분해합니다.
단계 2.6.2.2.3
에서 를 인수분해합니다.
단계 2.7
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.7.1
에서 를 인수분해합니다.
단계 2.7.2
공약수로 약분합니다.
단계 2.7.3
수식을 다시 씁니다.
단계 2.8
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.1
분배 법칙을 적용합니다.
단계 2.8.2
분배 법칙을 적용합니다.
단계 2.8.3
분배 법칙을 적용합니다.
단계 2.8.4
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.4.1
의 반대 항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.4.1.1
인수가 항 과(와) (으)로 표현되도록 다시 정렬합니다.
단계 2.8.4.1.2
에서 을 뺍니다.
단계 2.8.4.1.3
에 더합니다.
단계 2.8.4.2
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.4.2.1
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.8.4.2.1.1
를 옮깁니다.
단계 2.8.4.2.1.2
을 곱합니다.
단계 2.8.4.2.2
을 곱합니다.
단계 2.8.4.3
에서 인수를 다시 정렬합니다.
단계 2.8.5
항을 다시 정렬합니다.
단계 2.8.6
에서 인수를 다시 정렬합니다.
단계 3
함수의 극대값과 극소값을 구하기 위해 도함수를 으로 두고 식을 풉니다.
단계 4
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
, 일 때 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 4.1.2
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 4.1.3
멱의 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.3.1
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.1.3.2
을 곱합니다.
단계 4.1.4
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.4.1
항을 다시 정렬합니다.
단계 4.1.4.2
에서 를 인수분해합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.4.2.1
에서 를 인수분해합니다.
단계 4.1.4.2.2
에서 를 인수분해합니다.
단계 4.1.4.2.3
에서 를 인수분해합니다.
단계 4.2
에 대한 1차 도함수는 입니다.
단계 5
1차 도함수가 이 되도록 한 뒤 방정식 을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
1차 도함수가 이 되게 합니다.
단계 5.2
분자가 0과 같게 만듭니다.
단계 5.3
에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.1
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 5.3.2
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.1
와 같다고 둡니다.
단계 5.3.2.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.2.2.1
지수에서 변수를 제거하기 위하여 방정식의 양변에 자연로그를 취합니다.
단계 5.3.2.2.2
이(가) 정의되지 않으므로 방정식을 풀 수 없습니다.
정의되지 않음
단계 5.3.2.2.3
에 대한 해가 없습니다.
해 없음
해 없음
해 없음
단계 5.3.3
가 되도록 하고 에 대해 식을 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.3.3.1
와 같다고 둡니다.
단계 5.3.3.2
방정식의 양변에 를 더합니다.
단계 5.3.4
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 6
도함수가 정의되지 않은 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 6.2
에 대해 풉니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 6.2.2
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.2.1
로 바꿔 씁니다.
단계 6.2.2.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 6.2.2.3
플러스 마이너스 입니다.
단계 7
계산할 임계점.
단계 8
에서 이차 미분값을 계산합니다. 이차 미분값이 양이면 이는 극소점입니다. 이차 미분값이 음이면 이는 극대점입니다.
단계 9
이차 미분값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.1.1
1의 모든 거듭제곱은 1입니다.
단계 9.1.2
을 곱합니다.
단계 9.1.3
간단히 합니다.
단계 9.1.4
을 곱합니다.
단계 9.1.5
간단히 합니다.
단계 9.1.6
간단히 합니다.
단계 9.1.7
에서 을 뺍니다.
단계 9.1.8
에 더합니다.
단계 9.2
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 9.2.1
1의 모든 거듭제곱은 1입니다.
단계 9.2.2
로 나눕니다.
단계 10
이계도함수가 양수이므로 은 극소값입니다. 이를 이계도함수 판정법이라고 합니다.
은 극소값입니다.
단계 11
일 때 y값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.1
수식에서 변수 을 대입합니다.
단계 11.2
결과를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 11.2.1
로 나눕니다.
단계 11.2.2
최종 답은 입니다.
단계 12
에 대한 극값입니다.
은 극솟값임
단계 13