미적분 예제

적분 계산하기 x 에 대한 x^3e^(6x^4) 제곱근 (2e^(6x^4)+1)^5 의 적분
단계 1
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
를 미분합니다.
단계 1.1.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.3.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.3.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.1.3.2.2
=일 때 이라는 지수 법칙을 이용하여 미분합니다.
단계 1.1.3.2.3
를 모두 로 바꿉니다.
단계 1.1.3.3
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.3.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.3.5
을 곱합니다.
단계 1.1.3.6
을 곱합니다.
단계 1.1.4
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.5.1
에 더합니다.
단계 1.1.5.2
에서 인수를 다시 정렬합니다.
단계 1.2
를 사용해 문제를 바꿔 씁니다.
단계 2
을 묶습니다.
단계 3
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 4
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 5
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 6
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
로 바꿔 씁니다.
단계 6.2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
을 곱합니다.
단계 6.2.2
을 곱합니다.
단계 6.2.3
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.3.1
에서 를 인수분해합니다.
단계 6.2.3.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.3.2.1
에서 를 인수분해합니다.
단계 6.2.3.2.2
공약수로 약분합니다.
단계 6.2.3.2.3
수식을 다시 씁니다.
단계 7
를 모두 로 바꿉니다.