미적분 예제

극한값 계산하기 x 가 pi/2 에 한없이 가까워질 때 극한 (sin(x-pi/4))/x
단계 1
에 가까워지는 극한에 대해 극한의 몫의 법칙을 적용하여 극한을 나눕니다.
단계 2
사인이 연속이므로 극한 lim을 삼각함수 안으로 이동합니다.
단계 3
에 가까워지는 극한에 대해 극한의 합의 법칙을 적용하여 극한을 나눕니다.
단계 4
에 가까워질 때 상수값 의 극한을 구합니다.
단계 5
가 있는 모든 곳에 을 대입하여 극한값을 계산합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
을 대입하여 의 극한을 계산합니다.
단계 5.2
을 대입하여 의 극한을 계산합니다.
단계 6
답을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
분자에 분모의 역수를 곱합니다.
단계 6.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 6.3
각 수식에 적절한 인수 을 곱하여 수식의 분모가 모두 이 되도록 식을 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.3.1
을 곱합니다.
단계 6.3.2
을 곱합니다.
단계 6.4
공통분모를 가진 분자끼리 묶습니다.
단계 6.5
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.5.1
의 왼쪽으로 이동하기
단계 6.5.2
에서 을 뺍니다.
단계 6.6
의 정확한 값은 입니다.
단계 6.7
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.7.1
공약수로 약분합니다.
단계 6.7.2
수식을 다시 씁니다.
단계 6.8
을 묶습니다.
단계 7
결과값은 다양한 형태로 나타낼 수 있습니다.
완전 형식:
소수 형태: