미적분 예제

극한값 계산하기 x 가 infinity 에 한없이 가까워질 때 극한 (3x^2+4x+3)/(x^3+x+14)
단계 1
분모의 의 가장 높은 차수인 로 분자와 분모를 나눕니다.
단계 2
극한값을 계산합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1.1
에서 를 인수분해합니다.
단계 2.1.1.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.1.2.1
에서 를 인수분해합니다.
단계 2.1.1.2.2
공약수로 약분합니다.
단계 2.1.1.2.3
수식을 다시 씁니다.
단계 2.1.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.1
에서 를 인수분해합니다.
단계 2.1.2.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1.2.2.1
에서 를 인수분해합니다.
단계 2.1.2.2.2
공약수로 약분합니다.
단계 2.1.2.2.3
수식을 다시 씁니다.
단계 2.2
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1.1
공약수로 약분합니다.
단계 2.2.1.2
수식을 다시 씁니다.
단계 2.2.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.1
승 합니다.
단계 2.2.2.2
에서 를 인수분해합니다.
단계 2.2.2.3
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.2.3.1
에서 를 인수분해합니다.
단계 2.2.2.3.2
공약수로 약분합니다.
단계 2.2.2.3.3
수식을 다시 씁니다.
단계 2.3
에 가까워지는 극한에 대해 극한의 몫의 법칙을 적용하여 극한을 나눕니다.
단계 2.4
에 가까워지는 극한에 대해 극한의 합의 법칙을 적용하여 극한을 나눕니다.
단계 2.5
항은 에 대해 상수이므로 극한 밖으로 옮깁니다.
단계 3
분모가 무한대로 발산하는 반면 분자는 실수에 가까워지므로 분수 에 가까워집니다.
단계 4
항은 에 대해 상수이므로 극한 밖으로 옮깁니다.
단계 5
분모가 무한대로 발산하는 반면 분자는 실수에 가까워지므로 분수 에 가까워집니다.
단계 6
항은 에 대해 상수이므로 극한 밖으로 옮깁니다.
단계 7
분모가 무한대로 발산하는 반면 분자는 실수에 가까워지므로 분수 에 가까워집니다.
단계 8
극한값을 계산합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
에 가까워지는 극한에 대해 극한의 합의 법칙을 적용하여 극한을 나눕니다.
단계 8.2
에 가까워질 때 상수값 의 극한을 구합니다.
단계 9
분모가 무한대로 발산하는 반면 분자는 실수에 가까워지므로 분수 에 가까워집니다.
단계 10
항은 에 대해 상수이므로 극한 밖으로 옮깁니다.
단계 11
분모가 무한대로 발산하는 반면 분자는 실수에 가까워지므로 분수 에 가까워집니다.
단계 12
답을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 12.1
분자를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 12.1.1
을 곱합니다.
단계 12.1.2
을 곱합니다.
단계 12.1.3
을 곱합니다.
단계 12.1.4
에 더합니다.
단계 12.1.5
에 더합니다.
단계 12.2
분모를 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 12.2.1
을 곱합니다.
단계 12.2.2
에 더합니다.
단계 12.2.3
에 더합니다.
단계 12.3
로 나눕니다.