미적분 예제

Trouver la dérivée - d/dy 1/(2y^2)+(y^4)/16
단계 1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 2
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2
로 바꿔 씁니다.
단계 2.3
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.3.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3.3
를 모두 로 바꿉니다.
단계 2.4
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.5
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.5.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 2.5.2
을 곱합니다.
단계 2.6
을 곱합니다.
단계 2.7
승 합니다.
단계 2.8
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.9
에서 을 뺍니다.
단계 2.10
을 묶습니다.
단계 2.11
을 묶습니다.
단계 2.12
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 2.13
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.13.1
에서 를 인수분해합니다.
단계 2.13.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.13.2.1
에서 를 인수분해합니다.
단계 2.13.2.2
공약수로 약분합니다.
단계 2.13.2.3
수식을 다시 씁니다.
단계 2.14
마이너스 부호를 분수 앞으로 보냅니다.
단계 3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.3
을 묶습니다.
단계 3.4
을 묶습니다.
단계 3.5
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.1
에서 를 인수분해합니다.
단계 3.5.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.5.2.1
에서 를 인수분해합니다.
단계 3.5.2.2
공약수로 약분합니다.
단계 3.5.2.3
수식을 다시 씁니다.
단계 4
항을 다시 정렬합니다.