미적분 예제

적분 계산하기 a 에 대한 (a+bx^2)/( 제곱근 3ax+bx^3) 의 적분
단계 1
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
를 미분합니다.
단계 1.1.2
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.3.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.3.3
을 곱합니다.
단계 1.1.4
상수의 미분 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.4.1
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.4.2
에 더합니다.
단계 1.2
를 사용해 문제를 바꿔 씁니다.
단계 2
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 2.2
을 묶습니다.
단계 2.3
공통분모를 가진 분자끼리 묶습니다.
단계 2.4
의 왼쪽으로 이동하기
단계 2.5
에 더합니다.
단계 2.6
을 곱합니다.
단계 2.7
조합합니다.
단계 2.8
분배 법칙을 적용합니다.
단계 2.9
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.9.1
공약수로 약분합니다.
단계 2.9.2
수식을 다시 씁니다.
단계 2.10
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.10.1
에서 를 인수분해합니다.
단계 2.10.2
공약수로 약분합니다.
단계 2.10.3
수식을 다시 씁니다.
단계 2.11
승 합니다.
단계 2.12
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.13
에 더합니다.
단계 2.14
을 곱합니다.
단계 2.15
을 곱합니다.
단계 2.16
승 합니다.
단계 2.17
승 합니다.
단계 2.18
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.19
에 더합니다.
단계 3
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 4
지수의 기본 법칙을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 4.2
승을 취하여 분모 밖으로 옮깁니다.
단계 4.3
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 4.3.2
을 묶습니다.
단계 4.3.3
마이너스 부호를 분수 앞으로 보냅니다.
단계 5
을 전개합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
분배 법칙을 적용합니다.
단계 5.2
승 합니다.
단계 5.3
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.4
을(를) 공통분모가 있는 분수로 표현합니다.
단계 5.5
공통분모를 가진 분자끼리 묶습니다.
단계 5.6
에서 을 뺍니다.
단계 5.7
을 다시 정렬합니다.
단계 6
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 7
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 8
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 9
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 10
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
을 묶습니다.
단계 10.2
간단히 합니다.
단계 11
를 모두 로 바꿉니다.
단계 12
항을 다시 정렬합니다.