문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
다항식을 나눗셈 형태로 적습니다. 각 지수에 대하여 항이 없는 경우 값이 인 항을 삽입합니다.
- | + | - |
단계 1.2
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
- | |||||||
- | + | - |
단계 1.3
새로운 몫 값에 제수를 곱합니다.
- | |||||||
- | + | - | |||||
+ | - |
단계 1.4
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
- | |||||||
- | + | - | |||||
- | + |
단계 1.5
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
- | |||||||
- | + | - | |||||
- | + | ||||||
- |
단계 1.6
최종 답은 몫에 제수 분의 나머지를 더한 값입니다.
단계 2
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 3
단계 3.1
에서 를 인수분해합니다.
단계 3.2
공약수로 약분합니다.
단계 3.2.1
에서 를 인수분해합니다.
단계 3.2.2
에서 를 인수분해합니다.
단계 3.2.3
에서 를 인수분해합니다.
단계 3.2.4
공약수로 약분합니다.
단계 3.2.5
수식을 다시 씁니다.
단계 4
상수 규칙을 적용합니다.
단계 5
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 6
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 7
에 을 곱합니다.
단계 8
단계 8.1
로 둡니다. 를 구합니다.
단계 8.1.1
다시 씁니다.
단계 8.1.2
을 로 나눕니다.
단계 8.2
와 를 사용해 문제를 바꿔 씁니다.
단계 9
마이너스 부호를 분수 앞으로 보냅니다.
단계 10
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 11
에 을 곱합니다.
단계 12
를 에 대해 적분하면 입니다.
단계 13
간단히 합니다.
단계 14
를 모두 로 바꿉니다.