문제를 입력하십시오...
미적분 예제
단계 1
가 에 가까워지는 극한에 대해 극한의 몫의 법칙을 적용하여 극한을 나눕니다.
단계 2
가 에 가까워지는 극한에 대해 극한의 합의 법칙을 적용하여 극한을 나눕니다.
단계 3
사인이 연속이므로 극한 lim을 삼각함수 안으로 이동합니다.
단계 4
가 에 가까워지는 극한에 대해 극한의 합의 법칙을 적용하여 극한을 나눕니다.
단계 5
가 에 가까워질 때 상수값 의 극한을 구합니다.
단계 6
항은 에 대해 상수이므로 극한 밖으로 옮깁니다.
단계 7
가 에 가까워질 때 상수값 의 극한을 구합니다.
단계 8
극한을 루트 안으로 옮깁니다.
단계 9
가 에 가까워지는 극한에 대해 극한의 합의 법칙을 적용하여 극한을 나눕니다.
단계 10
극한의 멱의 법칙을 이용하여 의 지수 를 극한 밖으로 옮깁니다.
단계 11
가 에 가까워질 때 상수값 의 극한을 구합니다.
단계 12
단계 12.1
에 을 대입하여 의 극한을 계산합니다.
단계 12.2
에 을 대입하여 의 극한을 계산합니다.
단계 12.3
에 을 대입하여 의 극한을 계산합니다.
단계 13
단계 13.1
분자를 간단히 합니다.
단계 13.1.1
에 을 곱합니다.
단계 13.1.2
에서 을 뺍니다.
단계 13.1.3
의 정확한 값은 입니다.
단계 13.1.4
에 을 곱합니다.
단계 13.1.5
를 에 더합니다.
단계 13.1.6
를 에 더합니다.
단계 13.2
분모를 간단히 합니다.
단계 13.2.1
를 승 합니다.
단계 13.2.2
에 을 곱합니다.
단계 13.2.3
에서 을 뺍니다.
단계 13.2.4
을 로 바꿔 씁니다.
단계 13.2.5
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 13.3
을 로 나눕니다.