미적분 예제

적분 계산하기 구간 0 에서 pi/2 까지의 x 에 대한 (sin(x))/(1-cos(x)) 의 적분
단계 1
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
를 미분합니다.
단계 1.1.2
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.2.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 1.1.2.2
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 1.1.3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.3.2
에 대해 미분하면입니다.
단계 1.1.3.3
을 곱합니다.
단계 1.1.3.4
을 곱합니다.
단계 1.1.4
에 더합니다.
단계 1.2
에 극한의 하한을 대입합니다.
단계 1.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.3.1.1
의 정확한 값은 입니다.
단계 1.3.1.2
을 곱합니다.
단계 1.3.2
에서 을 뺍니다.
단계 1.4
에 극한의 상한을 대입합니다.
단계 1.5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.5.1.1
의 정확한 값은 입니다.
단계 1.5.1.2
을 곱합니다.
단계 1.5.2
에 더합니다.
단계 1.6
, 에 대해 알아낸 값은 정적분을 계산하는 데 사용됩니다.
단계 1.7
, 새로운 적분의 극한을 활용하여 문제를 바꿔 씁니다.
단계 2
에 대해 적분하면 입니다.
단계 3
, 일 때, 값을 계산합니다.
단계 4
로그의 나눗셈의 성질 을 이용합니다.
단계 5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
절댓값은 숫자와 0 사이의 거리를 말합니다. 사이의 거리는 입니다.
단계 5.2
으로 나누기가 수식에 포함되어 있습니다. 수식이 정의되지 않습니다.
정의되지 않음
단계 6
으로 나누기가 수식에 포함되어 있습니다. 수식이 정의되지 않습니다.
정의되지 않음