문제를 입력하십시오...
미적분 예제
Let
단계 1
단계 1.1
1차 도함수를 구합니다.
단계 1.1.1
, 일 때 는 이라는 몫의 미분 법칙을 이용하여 미분합니다.
단계 1.1.2
=일 때 은 이라는 지수 법칙을 이용하여 미분합니다.
단계 1.1.3
미분합니다.
단계 1.1.3.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.1.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.3.3
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 1.1.3.4
식을 간단히 합니다.
단계 1.1.3.4.1
를 에 더합니다.
단계 1.1.3.4.2
에 을 곱합니다.
단계 1.1.4
간단히 합니다.
단계 1.1.4.1
분배 법칙을 적용합니다.
단계 1.1.4.2
분자를 간단히 합니다.
단계 1.1.4.2.1
을 로 바꿔 씁니다.
단계 1.1.4.2.2
에서 을 뺍니다.
단계 1.1.4.3
항을 다시 정렬합니다.
단계 1.1.4.4
에서 를 인수분해합니다.
단계 1.1.4.4.1
에서 를 인수분해합니다.
단계 1.1.4.4.2
에서 를 인수분해합니다.
단계 1.1.4.4.3
에서 를 인수분해합니다.
단계 1.2
의 에 대한 1차 도함수는 입니다.
단계 2
단계 2.1
1차 도함수가 이 되게 합니다.
단계 2.2
분자가 0과 같게 만듭니다.
단계 2.3
에 대해 식을 풉니다.
단계 2.3.1
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.3.2
이 가 되도록 하고 에 대해 식을 풉니다.
단계 2.3.2.1
를 와 같다고 둡니다.
단계 2.3.2.2
을 에 대해 풉니다.
단계 2.3.2.2.1
지수에서 변수를 제거하기 위하여 방정식의 양변에 자연로그를 취합니다.
단계 2.3.2.2.2
이(가) 정의되지 않으므로 방정식을 풀 수 없습니다.
정의되지 않음
단계 2.3.2.2.3
에 대한 해가 없습니다.
해 없음
해 없음
해 없음
단계 2.3.3
이 가 되도록 하고 에 대해 식을 풉니다.
단계 2.3.3.1
를 와 같다고 둡니다.
단계 2.3.3.2
방정식의 양변에 를 더합니다.
단계 2.3.4
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 3
단계 3.1
식이 정의되지 않은 지점을 알아내려면 의 분모를 와 같게 설정해야 합니다.
단계 3.2
에 대해 풉니다.
단계 3.2.1
를 와 같다고 둡니다.
단계 3.2.2
방정식의 양변에 를 더합니다.
단계 4
단계 4.1
일 때 값을 구합니다.
단계 4.1.1
에 를 대입합니다.
단계 4.1.2
간단히 합니다.
단계 4.1.2.1
에서 을 뺍니다.
단계 4.1.2.2
을 로 나눕니다.
단계 4.2
일 때 값을 구합니다.
단계 4.2.1
에 를 대입합니다.
단계 4.2.2
간단히 합니다.
단계 4.2.2.1
에서 을 뺍니다.
단계 4.2.2.2
으로 나누기가 수식에 포함되어 있습니다. 수식이 정의되지 않습니다.
정의되지 않음
정의되지 않음
정의되지 않음
단계 4.3
모든 점을 나열합니다.
단계 5