문제를 입력하십시오...
미적분 예제
단계 1
을 함수로 씁니다.
단계 2
함수 는 도함수 의 부정 적분을 계산하여 구할 수 있습니다.
단계 3
적분식을 세워 풉니다.
단계 4
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 5
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 6
단계 6.1
로 둡니다. 를 구합니다.
단계 6.1.1
를 미분합니다.
단계 6.1.2
미분합니다.
단계 6.1.2.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 6.1.2.2
이 에 대해 일정하므로, 를 에 대해 미분하면 입니다.
단계 6.1.3
의 값을 구합니다.
단계 6.1.3.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 6.1.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 6.1.3.3
에 을 곱합니다.
단계 6.1.4
에서 을 뺍니다.
단계 6.2
와 를 사용해 문제를 바꿔 씁니다.
단계 7
단계 7.1
마이너스 부호를 분수 앞으로 보냅니다.
단계 7.2
에 을 곱합니다.
단계 7.3
의 왼쪽으로 이동하기
단계 8
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 9
에 을 곱합니다.
단계 10
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 11
단계 11.1
와 을 묶습니다.
단계 11.2
및 의 공약수로 약분합니다.
단계 11.2.1
에서 를 인수분해합니다.
단계 11.2.2
공약수로 약분합니다.
단계 11.2.2.1
에서 를 인수분해합니다.
단계 11.2.2.2
공약수로 약분합니다.
단계 11.2.2.3
수식을 다시 씁니다.
단계 11.2.2.4
을 로 나눕니다.
단계 12
를 에 대해 적분하면 입니다.
단계 13
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 14
를 에 대해 적분하면 입니다.
단계 15
은 에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 16
단계 16.1
에 승을 취하여 분모 밖으로 옮깁니다.
단계 16.2
의 지수를 곱합니다.
단계 16.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 16.2.2
에 을 곱합니다.
단계 17
멱의 법칙에 의해 를 에 대해 적분하면 가 됩니다.
단계 18
단계 18.1
간단히 합니다.
단계 18.2
간단히 합니다.
단계 18.2.1
에 을 곱합니다.
단계 18.2.2
와 을 묶습니다.
단계 18.2.3
마이너스 부호를 분수 앞으로 보냅니다.
단계 19
를 모두 로 바꿉니다.
단계 20
답은 함수 의 역도함수입니다.