문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
를 완전제곱식 형태로 만듭니다.
단계 1.1.1
형태를 이용해 , , 값을 구합니다.
단계 1.1.2
포물선 방정식의 꼭짓점 형태를 이용합니다.
단계 1.1.3
공식을 이용하여 값을 구합니다.
단계 1.1.3.1
과 값을 공식 에 대입합니다.
단계 1.1.3.2
우변을 간단히 합니다.
단계 1.1.3.2.1
및 의 공약수로 약분합니다.
단계 1.1.3.2.1.1
에서 를 인수분해합니다.
단계 1.1.3.2.1.2
공약수로 약분합니다.
단계 1.1.3.2.1.2.1
에서 를 인수분해합니다.
단계 1.1.3.2.1.2.2
공약수로 약분합니다.
단계 1.1.3.2.1.2.3
수식을 다시 씁니다.
단계 1.1.3.2.2
및 의 공약수로 약분합니다.
단계 1.1.3.2.2.1
에서 를 인수분해합니다.
단계 1.1.3.2.2.2
공약수로 약분합니다.
단계 1.1.3.2.2.2.1
에서 를 인수분해합니다.
단계 1.1.3.2.2.2.2
공약수로 약분합니다.
단계 1.1.3.2.2.2.3
수식을 다시 씁니다.
단계 1.1.3.2.2.2.4
을 로 나눕니다.
단계 1.1.4
공식을 이용하여 값을 구합니다.
단계 1.1.4.1
, , 값을 공식 에 대입합니다.
단계 1.1.4.2
우변을 간단히 합니다.
단계 1.1.4.2.1
각 항을 간단히 합니다.
단계 1.1.4.2.1.1
를 승 합니다.
단계 1.1.4.2.1.2
에 을 곱합니다.
단계 1.1.4.2.1.3
을 로 나눕니다.
단계 1.1.4.2.1.4
에 을 곱합니다.
단계 1.1.4.2.2
에서 을 뺍니다.
단계 1.1.5
, , 값을 꼭짓점 형태 에 대입합니다.
단계 1.2
를 로 바꿔 방정식 에 대입합니다.
단계 1.3
양변에 을 더하여 을 방정식의 우변으로 보냅니다.
단계 1.4
를 완전제곱식 형태로 만듭니다.
단계 1.4.1
형태를 이용해 , , 값을 구합니다.
단계 1.4.2
포물선 방정식의 꼭짓점 형태를 이용합니다.
단계 1.4.3
공식을 이용하여 값을 구합니다.
단계 1.4.3.1
과 값을 공식 에 대입합니다.
단계 1.4.3.2
우변을 간단히 합니다.
단계 1.4.3.2.1
및 의 공약수로 약분합니다.
단계 1.4.3.2.1.1
에서 를 인수분해합니다.
단계 1.4.3.2.1.2
공약수로 약분합니다.
단계 1.4.3.2.1.2.1
에서 를 인수분해합니다.
단계 1.4.3.2.1.2.2
공약수로 약분합니다.
단계 1.4.3.2.1.2.3
수식을 다시 씁니다.
단계 1.4.3.2.2
및 의 공약수로 약분합니다.
단계 1.4.3.2.2.1
에서 를 인수분해합니다.
단계 1.4.3.2.2.2
공약수로 약분합니다.
단계 1.4.3.2.2.2.1
에서 를 인수분해합니다.
단계 1.4.3.2.2.2.2
공약수로 약분합니다.
단계 1.4.3.2.2.2.3
수식을 다시 씁니다.
단계 1.4.3.2.2.2.4
을 로 나눕니다.
단계 1.4.4
공식을 이용하여 값을 구합니다.
단계 1.4.4.1
, , 값을 공식 에 대입합니다.
단계 1.4.4.2
우변을 간단히 합니다.
단계 1.4.4.2.1
각 항을 간단히 합니다.
단계 1.4.4.2.1.1
를 승 합니다.
단계 1.4.4.2.1.2
에 을 곱합니다.
단계 1.4.4.2.1.3
을 로 나눕니다.
단계 1.4.4.2.1.4
에 을 곱합니다.
단계 1.4.4.2.2
를 에 더합니다.
단계 1.4.5
, , 값을 꼭짓점 형태 에 대입합니다.
단계 1.5
를 로 바꿔 방정식 에 대입합니다.
단계 1.6
양변에 을 더하여 을 방정식의 우변으로 보냅니다.
단계 1.7
을 간단히 합니다.
단계 1.7.1
를 에 더합니다.
단계 1.7.2
에서 을 뺍니다.
단계 1.8
오른쪽 항이 양수가 되도록 방정식의 각 항의 부호를 바꿉니다.
단계 1.9
각 항을 로 나눠 우변이 1이 되게 합니다.
단계 1.10
우변을 로 만들기 위하여 식의 각 변을 간단히 합니다. 타원 또는 쌍곡선의 표준식의 우변은 입니다.
단계 2
쌍곡선의 공식입니다. 이 공식을 이용하여 쌍곡선의 점근선을 구하는 데 사용되는 값들을 계산합니다.
단계 3
이 쌍곡선에서의 값과 표준형을 비교합니다. 변수 는 원점에서 x축 방향으로 떨어진 거리를 나타내고 는 원점에서 y축 방향으로 떨어진 거리 를 나타냅니다.
단계 4
쌍곡선의 중심은 형태입니다. 와 값을 식에 대입합니다.
단계 5
단계 5.1
다음의 공식을 이용하여 중심으로부터 쌍곡선의 중점까지의 거리를 구합니다.
단계 5.2
, 값을 공식에 대입합니다.
단계 5.3
간단히 합니다.
단계 5.3.1
를 승 합니다.
단계 5.3.2
를 승 합니다.
단계 5.3.3
를 에 더합니다.
단계 5.3.4
을 로 바꿔 씁니다.
단계 5.3.4.1
에서 를 인수분해합니다.
단계 5.3.4.2
을 로 바꿔 씁니다.
단계 5.3.5
근호 안의 항을 밖으로 빼냅니다.
단계 6
단계 6.1
쌍곡선의 첫 번째 꼭짓점은 에 를 더해서 구할 수 있습니다.
단계 6.2
알고 있는 값인 , , 를 공식에 대입하여 식을 간단히 합니다.
단계 6.3
쌍곡선의 두 번째 꼭짓점은 에서 를 빼서 구할 수 있습니다.
단계 6.4
알고 있는 값인 , , 를 공식에 대입하여 식을 간단히 합니다.
단계 6.5
포물선의 꼭짓점은 형태입니다. 포물선은 2개의 꼭짓점을 갖습니다.
단계 7
단계 7.1
쌍곡선의 첫 번째 초점은 에 를 더해 구할 수 있습니다.
단계 7.2
알고 있는 값인 , , 를 공식에 대입하여 식을 간단히 합니다.
단계 7.3
쌍곡선의 두 번째 초점은 에서 를 빼서 구할 수 있습니다.
단계 7.4
알고 있는 값인 , , 를 공식에 대입하여 식을 간단히 합니다.
단계 7.5
쌍곡선의 초점은 형태입니다. 쌍곡선은 초점이 2개입니다.
단계 8
단계 8.1
다음의 공식을 이용하여 이심률 값을 구합니다.
단계 8.2
, 값을 공식에 대입합니다.
단계 8.3
간단히 합니다.
단계 8.3.1
분자를 간단히 합니다.
단계 8.3.1.1
를 승 합니다.
단계 8.3.1.2
를 승 합니다.
단계 8.3.1.3
를 에 더합니다.
단계 8.3.1.4
을 로 바꿔 씁니다.
단계 8.3.1.4.1
에서 를 인수분해합니다.
단계 8.3.1.4.2
을 로 바꿔 씁니다.
단계 8.3.1.5
근호 안의 항을 밖으로 빼냅니다.
단계 8.3.2
및 의 공약수로 약분합니다.
단계 8.3.2.1
에서 를 인수분해합니다.
단계 8.3.2.2
공약수로 약분합니다.
단계 8.3.2.2.1
에서 를 인수분해합니다.
단계 8.3.2.2.2
공약수로 약분합니다.
단계 8.3.2.2.3
수식을 다시 씁니다.
단계 9
단계 9.1
다음의 공식을 이용하여 쌍곡선의 초점 매개변수 값을 구합니다.
단계 9.2
, 값을 공식에 대입합니다.
단계 9.3
간단히 합니다.
단계 9.3.1
를 승 합니다.
단계 9.3.2
및 의 공약수로 약분합니다.
단계 9.3.2.1
에서 를 인수분해합니다.
단계 9.3.2.2
공약수로 약분합니다.
단계 9.3.2.2.1
에서 를 인수분해합니다.
단계 9.3.2.2.2
공약수로 약분합니다.
단계 9.3.2.2.3
수식을 다시 씁니다.
단계 9.3.3
에 을 곱합니다.
단계 9.3.4
분모를 결합하고 간단히 합니다.
단계 9.3.4.1
에 을 곱합니다.
단계 9.3.4.2
를 승 합니다.
단계 9.3.4.3
를 승 합니다.
단계 9.3.4.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 9.3.4.5
를 에 더합니다.
단계 9.3.4.6
을 로 바꿔 씁니다.
단계 9.3.4.6.1
을(를) 사용하여 을(를) (으)로 다시 씁니다.
단계 9.3.4.6.2
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 9.3.4.6.3
와 을 묶습니다.
단계 9.3.4.6.4
의 공약수로 약분합니다.
단계 9.3.4.6.4.1
공약수로 약분합니다.
단계 9.3.4.6.4.2
수식을 다시 씁니다.
단계 9.3.4.6.5
지수값을 계산합니다.
단계 10
쌍곡선이 위아래로 열리는 모양이므로 점근선은 와 같은 형태를 가집니다.
단계 11
단계 11.1
괄호를 제거합니다.
단계 11.2
을 간단히 합니다.
단계 11.2.1
각 항을 간단히 합니다.
단계 11.2.1.1
에 을 곱합니다.
단계 11.2.1.2
분배 법칙을 적용합니다.
단계 11.2.1.3
와 을 묶습니다.
단계 11.2.1.4
을 곱합니다.
단계 11.2.1.4.1
와 을 묶습니다.
단계 11.2.1.4.2
에 을 곱합니다.
단계 11.2.1.5
마이너스 부호를 분수 앞으로 보냅니다.
단계 11.2.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 11.2.3
와 을 묶습니다.
단계 11.2.4
공통분모를 가진 분자끼리 묶습니다.
단계 11.2.5
분자를 간단히 합니다.
단계 11.2.5.1
에 을 곱합니다.
단계 11.2.5.2
에서 을 뺍니다.
단계 11.2.6
마이너스 부호를 분수 앞으로 보냅니다.
단계 12
단계 12.1
괄호를 제거합니다.
단계 12.2
을 간단히 합니다.
단계 12.2.1
각 항을 간단히 합니다.
단계 12.2.1.1
에 을 곱합니다.
단계 12.2.1.2
분배 법칙을 적용합니다.
단계 12.2.1.3
와 을 묶습니다.
단계 12.2.1.4
을 곱합니다.
단계 12.2.1.4.1
에 을 곱합니다.
단계 12.2.1.4.2
와 을 묶습니다.
단계 12.2.1.4.3
에 을 곱합니다.
단계 12.2.1.5
의 왼쪽으로 이동하기
단계 12.2.2
공통 분모를 가지는 분수로 을 표현하기 위해 을 곱합니다.
단계 12.2.3
와 을 묶습니다.
단계 12.2.4
공통분모를 가진 분자끼리 묶습니다.
단계 12.2.5
분자를 간단히 합니다.
단계 12.2.5.1
에 을 곱합니다.
단계 12.2.5.2
에서 을 뺍니다.
단계 13
이 쌍곡선은 두 개의 점근선을 갖습니다.
단계 14
이는 쌍곡선을 그리고 분석하는 데 사용되는 중요한 값들입니다.
중심:
꼭짓점:
초점:
이심률:
초점 변수:
점근선: ,
단계 15