미적분 예제

Trouver la dérivée de Fourth f(x)=sin(ax)
단계 1
1차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.1.2
에 대해 미분하면입니다.
단계 1.1.3
를 모두 로 바꿉니다.
단계 1.2
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.3
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.2.3.1
을 곱합니다.
단계 1.2.3.2
인수를 다시 정렬합니다.
단계 2
2차 도함수를 구합니다
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.2.2
에 대해 미분하면입니다.
단계 2.2.3
를 모두 로 바꿉니다.
단계 2.3
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 2.4
승 합니다.
단계 2.5
승 합니다.
단계 2.6
지수 법칙 을 이용하여 지수를 합칩니다.
단계 2.7
에 더합니다.
단계 2.8
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.9
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.9.1
을 곱합니다.
단계 2.9.2
인수를 다시 정렬합니다.
단계 3
3차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.2.2
에 대해 미분하면입니다.
단계 3.2.3
를 모두 로 바꿉니다.
단계 3.3
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 3.4
승 합니다.
단계 3.5
지수 법칙 을 이용하여 지수를 합칩니다.
단계 3.6
에 더합니다.
단계 3.7
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 3.8
을 곱합니다.
단계 4
4차 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 4.2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 4.2.2
에 대해 미분하면입니다.
단계 4.2.3
를 모두 로 바꿉니다.
단계 4.3
상수배의 미분법을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
을 곱합니다.
단계 4.3.2
을 곱합니다.
단계 4.3.3
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 4.4
지수를 더하여 을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.1
를 옮깁니다.
단계 4.4.2
을 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.2.1
승 합니다.
단계 4.4.2.2
지수 법칙 을 이용하여 지수를 합칩니다.
단계 4.4.3
에 더합니다.
단계 4.5
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.6
을 곱합니다.
단계 5
에 대한 4차 도함수는 입니다.