미적분 예제

Trouver la linéarisation en θ=0 f(theta)=sin(theta+pi/3) , theta=0
,
단계 1
를 지나는 일차 함수식을 세웁니다.
단계 2
선형 함수에 값을 대입합니다.
단계 3
의 값을 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
수식에서 변수 을 대입합니다.
단계 3.2
을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.2.1
괄호를 제거합니다.
단계 3.2.2
에 더합니다.
단계 3.2.3
의 정확한 값은 입니다.
단계 4
도함수를 구하고 에서의 값을 계산합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
의 도함수를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 4.1.1.2
에 대해 미분하면입니다.
단계 4.1.1.3
를 모두 로 바꿉니다.
단계 4.1.2
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.2.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 4.1.2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.1.2.3
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 4.1.2.4
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1.2.4.1
에 더합니다.
단계 4.1.2.4.2
을 곱합니다.
단계 4.2
수식에서 변수 을 대입합니다.
단계 4.3
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.3.1
에 더합니다.
단계 4.3.2
의 정확한 값은 입니다.
단계 5
해당 값들을 선형화 함수에 대입하여 에서 선형화한 식을 구합니다.
단계 6
각 항을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
에서 을 뺍니다.
단계 6.2
을 묶습니다.
단계 7