미적분 예제

역도함수 구하기 6/(x^3)-4e^(2x)+7
단계 1
을 함수로 씁니다.
단계 2
함수 는 도함수 의 부정 적분을 계산하여 구할 수 있습니다.
단계 3
적분식을 세워 풉니다.
단계 4
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 5
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 6
지수의 기본 법칙을 적용합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.1
승을 취하여 분모 밖으로 옮깁니다.
단계 6.2
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 6.2.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 6.2.2
을 곱합니다.
단계 7
멱의 법칙에 의해 에 대해 적분하면 가 됩니다.
단계 8
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
을 묶습니다.
단계 8.2
음의 지수 법칙 을 활용하여 를 분모로 이동합니다.
단계 9
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 10
먼저 로 정의합니다. 그러면 이므로 가 됩니다. 이 식을 를 이용하여 다시 씁니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1
로 둡니다. 를 구합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 10.1.1
를 미분합니다.
단계 10.1.2
에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 10.1.3
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 10.1.4
을 곱합니다.
단계 10.2
를 사용해 문제를 바꿔 씁니다.
단계 11
을 묶습니다.
단계 12
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 13
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.1
을 묶습니다.
단계 13.2
의 공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.2.1
에서 를 인수분해합니다.
단계 13.2.2
공약수로 약분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 13.2.2.1
에서 를 인수분해합니다.
단계 13.2.2.2
공약수로 약분합니다.
단계 13.2.2.3
수식을 다시 씁니다.
단계 13.2.2.4
로 나눕니다.
단계 14
에 대해 적분하면 입니다.
단계 15
상수 규칙을 적용합니다.
단계 16
간단히 합니다.
단계 17
를 모두 로 바꿉니다.
단계 18
답은 함수 의 역도함수입니다.