미적분 예제

Trouver la dérivée à l''aide du théorème de dérivation des fonctions composées - d/dx y=(sin(x^3+7)^5)^9
단계 1
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 1.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 1.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.3
를 모두 로 바꿉니다.
단계 2
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 2.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 2.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 2.3
를 모두 로 바꿉니다.
단계 3
, 일 때 이라는 연쇄 법칙을 이용하여 미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 3.1
연쇄법칙을 적용하기 위해 로 바꿉니다.
단계 3.2
에 대해 미분하면입니다.
단계 3.3
를 모두 로 바꿉니다.
단계 4
미분합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.1
합의 법칙에 의해 에 대해 미분하면 가 됩니다.
단계 4.2
일 때 이라는 멱의 법칙을 이용하여 미분합니다.
단계 4.3
에 대해 일정하므로, 에 대해 미분하면 입니다.
단계 4.4
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 4.4.1
에 더합니다.
단계 4.4.2
을 곱합니다.
단계 4.4.3
인수를 다시 정렬합니다.
단계 5
항을 묶습니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
의 지수를 곱합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1.1
멱의 법칙을 적용하여 과 같이 지수를 곱합니다.
단계 5.1.2
을 곱합니다.
단계 5.2
을 곱합니다.
단계 5.3
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.4
에 더합니다.