문제를 입력하십시오...
미적분 예제
단계 1
단계 1.1
1차 도함수를 구합니다.
단계 1.1.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.1.2
의 값을 구합니다.
단계 1.1.2.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.2.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.2.3
와 을 묶습니다.
단계 1.1.2.4
에 을 곱합니다.
단계 1.1.2.5
와 을 묶습니다.
단계 1.1.2.6
및 의 공약수로 약분합니다.
단계 1.1.2.6.1
에서 를 인수분해합니다.
단계 1.1.2.6.2
공약수로 약분합니다.
단계 1.1.2.6.2.1
에서 를 인수분해합니다.
단계 1.1.2.6.2.2
공약수로 약분합니다.
단계 1.1.2.6.2.3
수식을 다시 씁니다.
단계 1.1.3
의 값을 구합니다.
단계 1.1.3.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.1.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.1.3.3
에 을 곱합니다.
단계 1.2
2차 도함수를 구합니다
단계 1.2.1
합의 법칙에 의해 를 에 대해 미분하면 가 됩니다.
단계 1.2.2
의 값을 구합니다.
단계 1.2.2.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.2.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.2.3
와 을 묶습니다.
단계 1.2.2.4
에 을 곱합니다.
단계 1.2.2.5
와 을 묶습니다.
단계 1.2.2.6
및 의 공약수로 약분합니다.
단계 1.2.2.6.1
에서 를 인수분해합니다.
단계 1.2.2.6.2
공약수로 약분합니다.
단계 1.2.2.6.2.1
에서 를 인수분해합니다.
단계 1.2.2.6.2.2
공약수로 약분합니다.
단계 1.2.2.6.2.3
수식을 다시 씁니다.
단계 1.2.2.6.2.4
을 로 나눕니다.
단계 1.2.3
의 값을 구합니다.
단계 1.2.3.1
은 에 대해 일정하므로 에 대한 의 미분은 입니다.
단계 1.2.3.2
일 때 는 이라는 멱의 법칙을 이용하여 미분합니다.
단계 1.2.3.3
에 을 곱합니다.
단계 1.3
의 에 대한 2차 도함수는 입니다.
단계 2
단계 2.1
2차 도함수를 과(와) 같게 합니다.
단계 2.2
에서 를 인수분해합니다.
단계 2.2.1
에서 를 인수분해합니다.
단계 2.2.2
에서 를 인수분해합니다.
단계 2.2.3
에서 를 인수분해합니다.
단계 2.3
방정식 좌변의 한 인수가 이면 전체 식은 이 됩니다.
단계 2.4
이 가 되도록 하고 에 대해 식을 풉니다.
단계 2.4.1
를 와 같다고 둡니다.
단계 2.4.2
을 에 대해 풉니다.
단계 2.4.2.1
좌변의 지수를 소거하기 위하여 방정식의 양변에 지정된 제곱근을 취합니다.
단계 2.4.2.2
을 간단히 합니다.
단계 2.4.2.2.1
을 로 바꿔 씁니다.
단계 2.4.2.2.2
양의 실수로 가정하여 근호 안의 항을 밖으로 빼냅니다.
단계 2.4.2.2.3
플러스 마이너스 은 입니다.
단계 2.5
이 가 되도록 하고 에 대해 식을 풉니다.
단계 2.5.1
를 와 같다고 둡니다.
단계 2.5.2
방정식의 양변에서 를 뺍니다.
단계 2.6
을 참으로 만드는 모든 값이 최종 해가 됩니다.
단계 3
단계 3.1
에 을 대입하여 값을 구합니다.
단계 3.1.1
수식에서 변수 에 을 대입합니다.
단계 3.1.2
결과를 간단히 합니다.
단계 3.1.2.1
각 항을 간단히 합니다.
단계 3.1.2.1.1
을 여러 번 거듭제곱해도 이 나옵니다.
단계 3.1.2.1.2
에 을 곱합니다.
단계 3.1.2.1.3
을 여러 번 거듭제곱해도 이 나옵니다.
단계 3.1.2.1.4
에 을 곱합니다.
단계 3.1.2.2
를 에 더합니다.
단계 3.1.2.3
최종 답은 입니다.
단계 3.2
에 을 대입하여 구한 점은 입니다. 이 점은 변곡점입니다.
단계 3.3
에 을 대입하여 값을 구합니다.
단계 3.3.1
수식에서 변수 에 을 대입합니다.
단계 3.3.2
결과를 간단히 합니다.
단계 3.3.2.1
각 항을 간단히 합니다.
단계 3.3.2.1.1
를 승 합니다.
단계 3.3.2.1.2
의 공약수로 약분합니다.
단계 3.3.2.1.2.1
에서 를 인수분해합니다.
단계 3.3.2.1.2.2
공약수로 약분합니다.
단계 3.3.2.1.2.3
수식을 다시 씁니다.
단계 3.3.2.1.3
에 을 곱합니다.
단계 3.3.2.1.4
를 승 합니다.
단계 3.3.2.1.5
에 을 곱합니다.
단계 3.3.2.2
를 에 더합니다.
단계 3.3.2.3
최종 답은 입니다.
단계 3.4
에 을 대입하여 구한 점은 입니다. 이 점은 변곡점입니다.
단계 3.5
변곡점이 될 수 있는 점을 구합니다.
단계 4
을 변곡점 가능성이 있는 점 주위 간격으로 나눕니다.
단계 5
단계 5.1
수식에서 변수 에 을 대입합니다.
단계 5.2
결과를 간단히 합니다.
단계 5.2.1
각 항을 간단히 합니다.
단계 5.2.1.1
를 승 합니다.
단계 5.2.1.2
에 을 곱합니다.
단계 5.2.1.3
를 승 합니다.
단계 5.2.1.4
에 을 곱합니다.
단계 5.2.2
를 에 더합니다.
단계 5.2.3
최종 답은 입니다.
단계 5.3
에서의 2차 미분값은 입니다. 이 값이 음수이므로 2차 도함수는 구간에서 감소합니다.
이므로 에서 감소함
이므로 에서 감소함
단계 6
단계 6.1
수식에서 변수 에 을 대입합니다.
단계 6.2
결과를 간단히 합니다.
단계 6.2.1
각 항을 간단히 합니다.
단계 6.2.1.1
를 승 합니다.
단계 6.2.1.2
에 을 곱합니다.
단계 6.2.1.3
를 승 합니다.
단계 6.2.1.4
에 을 곱합니다.
단계 6.2.2
를 에 더합니다.
단계 6.2.3
최종 답은 입니다.
단계 6.3
에서의 이계도함수는 입니다. 이 값이 양수이므로 이계도함수는 구간에서 증가합니다.
이므로 에서 증가함
이므로 에서 증가함
단계 7
단계 7.1
수식에서 변수 에 을 대입합니다.
단계 7.2
결과를 간단히 합니다.
단계 7.2.1
각 항을 간단히 합니다.
단계 7.2.1.1
를 승 합니다.
단계 7.2.1.2
에 을 곱합니다.
단계 7.2.1.3
를 승 합니다.
단계 7.2.1.4
에 을 곱합니다.
단계 7.2.2
를 에 더합니다.
단계 7.2.3
최종 답은 입니다.
단계 7.3
에서의 이계도함수는 입니다. 이 값이 양수이므로 이계도함수는 구간에서 증가합니다.
이므로 에서 증가함
이므로 에서 증가함
단계 8
변곡점이란 곡선의 오목함이 양에서 음으로 또는 음에서 양으로 바뀌는 점을 말합니다. 이 경우 변곡점은 입니다.
단계 9