미적분 예제

역도함수 구하기 자연로그 x^2+1
단계 1
을 함수로 씁니다.
단계 2
함수 는 도함수 의 부정 적분을 계산하여 구할 수 있습니다.
단계 3
적분식을 세워 풉니다.
단계 4
이고 일 때 공식을 이용하여 부분 적분합니다.
단계 5
간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 5.1
을 묶습니다.
단계 5.2
승 합니다.
단계 5.3
승 합니다.
단계 5.4
지수 법칙 을 이용하여 지수를 합칩니다.
단계 5.5
에 더합니다.
단계 6
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 7
을 곱합니다.
단계 8
로 나눕니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 8.1
다항식을 나눗셈 형태로 적습니다. 각 지수에 대하여 항이 없는 경우 값이 인 항을 삽입합니다.
++++
단계 8.2
피제수 의 고차항을 제수 의 고차항으로 나눕니다.
++++
단계 8.3
새로운 몫 값에 제수를 곱합니다.
++++
+++
단계 8.4
식을 피제수에서 빼야 하므로 의 모든 부호를 바꿉니다.
++++
---
단계 8.5
부호를 바꾼 뒤, 곱한 다항식의 마지막 피제수를 더해 새로운 피제수를 구합니다.
++++
---
-
단계 8.6
최종 답은 몫에 제수 분의 나머지를 더한 값입니다.
단계 9
하나의 적분을 여러 개의 적분으로 나눕니다.
단계 10
상수 규칙을 적용합니다.
단계 11
에 대해 상수이므로, 를 적분 밖으로 빼냅니다.
단계 12
식을 간단히 합니다.
자세한 풀이 단계를 보려면 여기를 누르십시오...
단계 12.1
을 다시 정렬합니다.
단계 12.2
로 바꿔 씁니다.
단계 13
에 대해 적분하면 입니다.
단계 14
간단히 합니다.
단계 15
답은 함수 의 역도함수입니다.